DEVICE SPECIFICATIONS

RF Preselector Module

This document lists specifications for the NI PXIe-5693 (NI 5693). Specifications are warranted under the following conditions:

- 30 minutes warm-up time
- Calibration cycle maintained
- Chassis fan speed set to High. NI recommends using slot blockers and EMC filler panels in empty module slots to minimize temperature drift.
- NI-RFSA instrument driver version 2.6 or later is used

Specifications describe the warranted, traceable product performance over ambient temperature ranges of 0 °C to 55 °C, unless otherwise noted.

Note Values in this document are *specifications* unless otherwise noted.

Typical values describe useful product performance beyond specifications that are not covered by warranty and do not include guardbands for measurement uncertainty or drift. Typical values may not be verified on all units shipped from the factory. Unless otherwise noted, typical values cover the expected performance of units over ambient temperature ranges of $23 \text{ }^{\circ}\text{C} \pm 5 \text{ }^{\circ}\text{C}$ with a 90% confidence level, based on measurements taken during development or production.

 2σ specifications describe the 95th percentile values in which 95% of the cases are met with a 95% confidence for any ambient temperature of 23 °C ± 5 °C

Nominal values (or supplemental information) describe additional information about the product that may be useful, including expected performance that is not covered under *Specifications* or *Typical* values. Nominal values are not covered by warranty.

Specifications are subject to change without notice. For the most recent NI 5693 specifications, visit *ni.com/manuals*.

To access NI 5693 documentation, navigate to **Start»All Programs»National Instruments» NI-RFSA»Documentation**.

National Instruments RF devices are capable of producing and/or acquiring accurate signals within common Medical Implantable Communication System (MICS) frequency bands. NI RF devices are tested and verified in manufacturing for many measurements. For more

information about RF device applications, visit *ni.com/global* to contact a National Instruments branch office.

Hot Surface If the NI 5693 has been in use, it may exceed safe handling temperatures and cause burns. Allow the NI 5693 to cool before removing it from the chassis.

Caution The protection provided by the NI 5693 can be impaired if it is used in a manner not described in this document.

Contents

Frequency	3
Preselector Filters	3
Notch Filters	5
Amplitude	6
Gain	6
Gain Range	6
Gain Accuracy	7
Low-Frequency Bypass Path	7
Noise Figure	8
Settling Time	8
Linearity	9
Third-Order Intercept Points	9
Second Harmonic Intercept Points	. 12
Input Power at 1 dB Gain Compression	. 13
Spurious Responses	. 13
Non-Input-Related (Residual) Spurs	. 13
RF Input Connector Emissions Level	.13
Reverse Isolation for Frequencies 4.2 GHz to 8.2 GHz.	. 14
Reverse Isolation	14
Calibration Signal	. 15
Calibration Signal Amplitude Accuracy	. 15
Physical Characteristics	. 16
Hardware Front Panel	. 16
Front Panel Connectors	16
Power	. 18
Physical Dimensions	18
Environment	18
Operating Environment	19
Storage Environment	. 19
Shock and Vibration	19
Compliance and Certifications	19
Safety	. 19
Electromagnetic Compatibility	. 20
CE Compliance	.20

Online Product Certification	
Environmental Management	20
Worldwide Support and Services	21

Frequency

Frequency range

Low-frequency bypass path	20 Hz to 30 MHz
Preselector path	20 MHz to 7.0 GHz
External filter path	20 MHz to 3.0 GHz

Preselector Filters

Frequency (MHz)

Table 1. NI 5693	Preselector Filters	(Nominal)
------------------	---------------------	-----------

Preselector Filter Band	Center Frequency Tune Range ¹ (MHz)	Passband Frequency Range ² (MHz)	Lower Stopband Frequency Range (MHz)	Upper Stopband Frequency Range (MHz)	Stopband Rejection (dB)
1	20 to 34	19 to 35	<14	>42	>20
2	>34 to 60	33 to 61	<27	>70	>20
3	>60 to 100	59 to 110	<49	>128	>20

¹ The preselector filter band selection is based on the center frequency tuning range. The lowest frequency preselector band is selected at the band-crossing frequencies.

² Passband Frequency Range is the calibrated range of the Preselector Filter Band.

Preselector Filter Band	Center Frequency Tune Range ¹ (MHz)	Passband Frequency Range ² (MHz)	Lower Stopband Frequency Range (MHz)	Upper Stopband Frequency Range (MHz)	Stopband Rejection (dB)
4	>100 to 160	90 to 170	<75	>185	>20
5	>160 to 225	140 to 245	<115	>285	>20
6	>225 to 350	205 to 370	<170	>420	>20
7	>350 to 555	330 to 575	<280	>660	>20
8	>555 to 950	530 to 975	<450	>1,120	>20
9	>950 to 1,560	910 to 1,600	<775	>1,920	>20
10	>1,560 to 2,000	1,520 to 2,040	<1,350	>2,320	>20
11	>2,000 to 2,500	1,960 to 2,540	<1,700	>2,860	>20
12	>2,500 to 3,000	2,460 to 3,040	<2,140	>3,460	>20
13	>3,000 to 3,800	2,960 to 3,840	<2,650	>4,350	>20
14	>3,800 to 4,600	3,560 to 4,640	<3,350	>5,050	>20
15	>4,600 to 5,800	4,560 to 5,840	<3,850	>6,550	>20
16	>5,800 to 7,000	5,760 to 7,040	<4,900	>8,250	>20

Table 1. NI 5693 Preselector Filters (Nominal) (Continued)

¹ The preselector filter band selection is based on the center frequency tuning range. The lowest frequency preselector band is selected at the band-crossing frequencies.

 $^{^{2}}$ Passband Frequency Range is the calibrated range of the Preselector Filter Band.

Notch Filters

able 2. IN 5055 Noton Filter (Norminal)

Notch Filter Band	Passband Frequency Range (MHz)	Notch Frequency Range (MHz)	Notch Filter Rejection ³ (dB)	Preselector Filter Band ³
N1	32 to 44	55 to 75	>38	2
N2	60 to 77	88 to 108	>25	3
N3	90 to 112	50 to 75	>40	3
N4	118 to 166	88 to 108	>23	4

³ Notch filter bands are a cascade of a preselector filter and a notch filter. Stopband rejection specifications for the preselector filter band apply in the notch filter bands.

Amplitude

Gain

	23 °C ± 5 °C (dB)		0 °C to 5	5 °C (dB)
Tune Frequency Range (MHz)	Preamplifier Enabled	Preamplifier Disabled	Preamplifier Enabled	Preamplifier Disabled
20 to 950	>23.5	>1.3	>22.6	>0.7
>950 to 2,000	>26.9	>-0.2	>25.9	>-0.9
>2,000 to 3,000	>15.9	>-2.0	>14.7	>-2.8
>3,000 to 5,800	>15.6	>0.1	>14.5	>-0.8
>5,800 to 7,000	>14.4	>-1.3	>13.2	>-2.3
Notch filters	_	>0.5		>-0.3
External filter		>1.14		>0.5

Table 3. NI 5693 Gain (Typical)4	3. NI 5693 Gain (Typical) ⁴)4,
----------------------------------	--	-----

Gain Range

	23 °C ± 5	5 °C (dB)	0 °C to 5	5 °C (dB)
Tune Frequency Range (MHz)	Preamplifier Enabled	Preamplifier Disabled	Preamplifier Enabled	Preamplifier Disabled
Preselector path 20 to 950	>16.8	>21.6	>15.1	>20.2
Preselector path >950 to 2,000	>20.6	>20.9	>18.8	>19.4

Table 4. NI 5693 Gain Range (Typical)⁶

⁴ Gain is the maximum NI 5693 gain setting.

⁵ Control the NI 5693 module gain by setting the reference level and the IF output power level. The module gain is defined by the following equation: *Module Gain = IF Output Power Level - Reference Level*.

⁶ Gain range is the difference between the maximum and minimum NI 5693 module gain settings.

	23 °C ± 5 °C (dB)		0 °C to 5	5 °C (dB)
Tune Frequency Range (MHz)	Preamplifier Enabled	Preamplifier Disabled	Preamplifier Enabled	Preamplifier Disabled
Preselector path >2,000 to 3,000	>13.5	>21.3	>11.3	>19.6
Preselector path >3,000 to 5,800	>21.1	>21.6	>18.7	>19.5
Preselector path >5,800 to 7,000	>21.3	>21.2	>18.8	>19.1
Notch filters	_	>22.4	_	>21.1
External filter	—	>21.8	—	>20.3

Table 4. NI 5693 Gain Range (Typical)⁶ (Continued)

Gain Accuracy

 Table 5. NI 5693 Gain Accuracy (Typical)⁷

Frequency	23 °C ± 5 °C (dB)	0 °C to 55 °C (dB)
20 MHz to 2.0 GHz	±0.55	±0.6
>2.0 GHz to 3.0 GHz	±0.55	±0.6
>3.0 GHz to 7.0 GHz	±0.55	±0.6

Low-Frequency Bypass Path

⁶ *Gain range* is the difference between the maximum and minimum NI 5693 module gain settings.

⁷ The Downconverter Gain property and the NIRFSA_ATTR_DOWNCONVERTER_GAIN attribute are read-only. *Gain accuracy* is the difference between the value reported by NI-RFSA and the measured gain.

Noise Figure

Frequency	23 °C ± 5 °C (dB)	0 °C to 55 °C (dB)
20 MHz to 150 MHz	13	13
	12, typical	12, typical
>150 MHz to 2.5 GHz	14.5	15
	13, typical	14.5, typical
>2.5 GHz to 3.2 GHz	15	16
	14, typical	15, typical
>3.2 GHz to 5.5 GHz	18	18.5
	16, typical	17, typical
>5.5 GHz to 7.0 GHz	18.5	19.1
	16, typical	17, typical

Table 6. NI 5693 Noise Figure⁸

Settling Time⁹

Filter switching
Within preselector bands 1 to 12.....200 μs, nominal and 13 to 16
Switching between preselector.....200 μs, nominal bands 1 to 4 and notch filters
Switching between preselector.....200 μs, nominal bands 1 to 12 and 13 to 16
Gain switching......200 μs, nominal
Preamplifier switching
Preselector bands 1 to 12.....100 μs, nominal
Preselector bands 13 to 16.......100 μs, nominal

⁸ Noise figure verification uses the maximum NI 5693 module gain with the preamplifier enabled.

⁹ Settled to within <0.1 dB of final amplitude.

Linearity

Third-Order Intercept Points

Table 7. NI 5693	Third-Order	Intercept	Points In-Ban	d. Pream	olifier Enabled ¹⁰
				.,	

		Third-Order Inte	rcept Point (dBm)
Filter Path	Frequency (MHz)	23 °C ± 5 °C	0 °C to 55 °C
Preselector path	20 to 150	-2.0	-2.0
	2010130	-1, typical	-1, typical
	>150 to 2.500	-7.0	-7.5
	~150 to 2,500	-5.0, typical	-5.0, typical
	>2 500 to 2 200	-5.5	-6
	>2,500 10 5,200	-5.0, typical	-5.0, typical
	>2200 to 5500	-5.0	-6.5
	> 5,200 10 5,500	-1.0, typical	-2.0, typical
	>5 500 to 7 000	-4.5	-5.5
	~3,300 10 7,000	0, typical	-1.0, typical

¹⁰ The values in this table were obtained from two -30 dBm tones spaced 700 kHz apart and the preselector set to the maximum NI 5693 module gain with the preamplifier enabled.

Table 8. NI 5693 Third-Order Intercept Points In-Band, Preamplifier Disabled			
		Third-Order Inte	ercept Point (dBm)
Filter Path	Frequency (MHz)	23 °C ± 5 °C	0 °C to 55 °C
Preselector path	20 to 150	+20	+20
	2010130	+22, typical	+22, typical
	> 150 to 2 500	+18	+17
	>150 to 2,500	+21, typical	+20, typical
	> 2 500 to 2 200	+17	+16
	~2,500 to 5,200	+21, typical	+20, typical
	2 2 200 / 5 500	+14	+14
	-3,200 to 3,500	+20, typical	+18, typical
		+15	+14

+20, typical

+23, nominal

+20, nominal

+21, nominal

+18, typical

+22.5, nominal

+19.5, nominal

+20.5, nominal

>5,500 to 7,000

20 to 150

>150 to 2,500

>2,500 to 3,000

 Table 8. NI 5693 Third-Order Intercept Points In-Band, Preamplifier Disabled¹¹

External filter¹²

¹¹ Two -10 dBm tones spaced 700 kHz apart and the preselector set to the maximum NI 5693 module gain with the preamplifier disabled.

¹² The external filter path uses an external 3-inch RF coaxial cable connected between the EXT FILTER IN and the EXT FILTER OUT connectors on the NI 5693.

Table 9. NI 5693	3 Third-Order	Intercept Po	oints Out-of-Bar	nd. Preamplifie	r Enabled ¹³

		Third-Order Inte	rcept Point (dBm)
Filter Path	Frequency (MHz)	23 °C ± 5 °C	0 °C to 55 °C
Preselector path	20 to 150	+10	+9
		+17, typical	+15, typical
	>150 to 2,500	0	-1
		+4, typical	+3, typical
	>2,500 to 7,000	+9	+8
		+17, typical	+17, typical

Table 10. NI 5693 Third-Order Intercept Points Out-of-Band, Preamplifier Disabled¹⁴

		Third-Order Inte	rcept Point (dBm)
Filter Path	Frequency (MHz)	23 °C ± 5 °C	0 °C to 55 °C
Preselector path	20 to 150	+38	+38
		+42, typical	+40, typical
	>150 to 2,500	+30	+28
		+35, typical	+32, typical
	>2,500 to 7,000	+29	+29
		+34, typical	+33, typical

¹³ Two -25 dBm tones placed outside the preselector passband such that the third-order intermodulation product falls in-band. Preselector set to maximum module gain and preamplifier enabled.

¹⁴ Two -5 dBm tones placed outside the preselector passband such that the third-order intermodulation product falls in-band. Preselector set to maximum module gain and preamplifier disabled.

Second Harmonic Intercept Points¹⁵

		Second Harmonic I	ntercept Point (dBm)
Filter Path	Source Frequency (MHz)	23 °C ± 5 °C	0 °C to 55 °C
Internal	20 to 250	+61	+60
	>250 to 2,000	+48	+47
	>2,000 to 3,500	+64	+63

Table 11. NI 5693 Second Harmonic Intercept Points, Preamplifier Enabled (Typical)

Table 12. NI 5693 Second Harmonic Intercept Points, Preamplifier Disabled (Typical)

		Second Harmonic Ir	ntercept Point (dBm)
Filter Path	Source Frequency (MHz)	23 °C ± 5 °C	0 °C to 55 °C
Internal	20 to 250	+69	+68
	>250 to 3,500	+74	+73
External	20 to 1,000	+37, nominal	+35, nominal
	>1,000 to 1,500	+40, nominal	+36, nominal

¹⁵ Single tone, power at RF IN connector at -5 dBm (preamplifier disabled) or -25 dBm (preamplifier enabled). For each preselector filter band, the tone frequency is set to the maximum center frequency tune range frequency divided by 2.

¹⁶ The *gain compression* measurement uses a two-tone desensitization method with an input referred power level and maximum module gain. This method places two tones within the preselector filter center frequency range. The lower amplitude tone power is set to -30 dBm with the preamplifier disabled and -50 dBm with the preamplifier enabled. The amplitude variation for the lower amplitude tone level cannot be great than 1 dB, as the higher amplitude tone power is increased from low power to the 1 dB gain compression specified input power.

Input Power at 1 dB Gain Compression

	23 °C ± 5 °C (dBm)		0 °C to 55	°C (dBm)
Frequency (MHz)	Preamplifier Enabled	Preamplifier Disabled	Preamplifier Enabled	Preamplifier Disabled
20 to 150	-16	+6	-19	+4
>150 to 2,500	-21	+5	-26	+3
>2,500 to 3,200	-16	+5	-20	+1.5
>3,200 to 5,500	-12	+4	-16	+1.5
>5,500 to 7,000	-11	+5	-15	+1.5

Table 13. NI 5693 Input Power at 1 dB Gain Compression (Typical)¹⁶

Spurious Responses

Non-Input-Related (Residual) Spurs 17

>20 MHz to 150 MHz	60 dBm, typica
>150 MHz to 2,500 MHz	81 dBm, typica

>2,500 MHz to 7,000 MHz.....-95 dBm, typical

RF Input Connector Emissions Level

Table 14. NI 5693 RF IN Emissions Level (Typical)

	23 °C ± 5 °C (dBm)		
Frequency (MHz)	Preamplifier Enabled	Preamplifier Disabled	
20 to 3,000	<-92	< -91	
3,000 to 7,000	< -95	< -94	

¹⁷ 23 °C ± 5 °C. Applies only to the RF OUT connector with the RF IN connector terminated. Measurements use the maximum gain setting and calibration signal disabled.

¹⁸ Calibration signal disabled.

Reverse Isolation for Frequencies 4.2 GHz to 8.2 GHz

	23 °C ± 5	°C (dBm)
Signal Path	Preamplifier Enabled	Preamplifier Disabled
Preselector filters 1 to 4	>39	>39
	>46, typical	>46, typical
Preselector filters 5 to 8	>38	>38
	>45, typical	>45, typical
Preselector filters 9 to 12	>35	>35
	>41, typical	>41, typical
Preselector filters 13 to 16	>35	>35
	>43, typical	>41, typical
Notch filter	>35	>35
	>37, typical	>37, typical
External filter		>33, typical
Low-frequency bypass path		>33, typical

Table 15. NI 5693 Reverse Isolation for Frequencies 4.2 GHz to 8.2 GHz

Reverse Isolation

	Table	16.	NI	5693	Reverse	Isolation	(Nominal))19
--	-------	-----	----	------	---------	-----------	-----------	-----

	23 °C ± 5 °C (dB)		
Signal Path	Preamplifier Enabled	Preamplifier Disabled	
Preselector filters 1 to 4	>49	>35	
Preselector filters 5 to 8	>50	>36	
Preselector filters 9 to 12	>57	>36	
Preselector filters 13 to 16	>43	>41	

¹⁹ Center frequency set to device center frequency.

Calibration Signal

Start Frequency (MHz)	Stop Frequency (MHz)	Frequency Resolution (kHz)
34.5	68.75	1.5625
>68.75	137.5	3.125
>137.5	275	6.250
>275	550	12.50
>550	1,100	25.00
>1,100	2,200	50.00
>2,200	4,200	100.0
>4,200	4,400	100.0
>4,400	7,000	200.0

Table 17. NI 5693 Calibration Signal Frequencies (Nominal)

Calibration Signal Amplitude Accuracy

Table 18.	NI 5693	Calibration	Signal Am	plitude Accur	acv ²⁰
	111 0000	Gambration	Olghai Am	pilluuc Accui	JUY

Frequency (MHz)	23 °C ± 5 °C (dB)	0 °C to 55 °C (dB)
34.5 MHz to 3.2 GHz	±0.9	±1.1
>3.2 GHz to 5.5 GHz	±1.2	±1.2
>5.5 GHz to 7 GHz	±1.1	±1.8

²⁰ Calibration tone power is referenced to the RF IN connector and is reported by the NI-RFSA Cal Tone Power Referred to RF IN property and the NIRFSA_ATTR_CAL_TONE_POWER_REFERRED_TO_RF_IN attribute. The calibration tone power is measured using an RF substitution technique that compares the RF power of a calibrated source as measured at the RF OUT connector with the calibration tone signal at the RF OUT connector.

Physical Characteristics

Hardware Front Panel

Figure 3. NI 5693 RF Preselector Module Front Panel

Front Panel Connectors

RF Input (RF IN)

Connector	SMA female
Reference impedance	50 Ω
Safe DC input voltage	
Minimum	25 V
Maximum	25 V

VSWR

Low-frequency bypass path
20 Hz to 30 MHz
Preselector filters 1 to 8
Preselector filters 9 to 10
Preselector filters 11 to 12<1.9:1
Preselector filters 13 to 16
External filter in connector

RF Output (RF OUT)

Connector	SMA female
Reference impedance	.50 Ω
Safe DC input voltage	
Minimum	25 V
Maximum	.25 V
VSWR	
Low-frequency bypass path	.<1.5 : 1
>100 MHz	
Preselector bands 1 to 8	.<1.8:1
Preselector bands 9 to 10	.<1.4 : 1
Preselector bands 11 to 12	.<1.4 : 1
Preselector bands 13 to 16	.<2.6:1
External filter out connector	.<1.7 : 1
External Filter Input/Output (EX	

External Filter Input/Output (EXT FILTER IN/EXT FILTER OUT)

Connector	SMA female
Reference impedance	50 Ω
Safe DC input voltage	
Minimum	25 V
Maximum	25 V
VSWR	<2.0:1

Power

Power Limits

Table 13. IN 3033 I OWEI LITTILS (NOTITINA)	Table 19.	NI 5693	Power Limits	(Nominal)
---	-----------	---------	--------------	-----------

Signal Path	RF IN Maximum Continuous Safe RF Power (dBm)	RF OUT Saturated Power (dBm)	RF OUT Maximum Continuous Safe RF Power (dBm)
Preselector bypass	+30	_	+30
Preselector with preamplifier disabled	+20	+15	+20
Preselector with preamplifier enabled	+20	+15	+20
External filter	+20	+15	+20

Power Requirements

3.3 V	1.30 A, nominal
12 V	0.85 A, nominal

Physical Dimensions

Size	
	21.6 cm \times 2.0 cm \times 13.0 cm
	$(8.5 \text{ in.} \times 0.8 \text{ in.} \times 5.1 \text{ in.})$
Weight	

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient
	temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with
	IEC 60068-2-1 and IEC 60068-2-2. Meets
	MIL PRF-28800F Class 3 low temperature
	limit and MIL PRF-28800F Class 2 high
	temperature limit.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)
Storage Environment	
Ambient temperature range	41 °C to +71 °C (Tested in accordance with
	IEC 60068-2-1 and IEC 60068-2-2. Meets
	MIL PRF-28800F Class 3 limits.)

Shock and Vibration

Operating shock	.30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	.5 Hz to 500 Hz, 0.3 g _{rms}
Nonoperating	.5 Hz to 500 Hz, 2.4 grms (Tested in accordance
	with IEC 60068-2-64. Nonoperating test
	profile exceeds the requirements of
	MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $\mathbf{C} \in \mathbf{C}$

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com/ certification*, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and

directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Worldwide Support and Services

The National Instruments website is your complete resource for technical support. At *ni.com/support*, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit *ni.com/services* for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit *ni.com/register* to register your National Instruments product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting *ni.com/certification*. If your product supports calibration, you can obtain the calibration certificate for your product at *ni.com/calibration*.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world. For telephone support in the United States, create your service request at *ni.com/support* or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the *Worldwide Offices* section of *ni.com/niglobal* to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: **Help**» **Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/ patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2012-2015 National Instruments. All rights reserved.