Available at Digi-Key www.digikey.com

5x7mm Precision TCXO Model DV75C

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040

> US Headquarters: 630-851-4722 uropean Headquarters +353-61-472221

www.conwin.com

Description:

The Connor-Winfield's DV75C is a 5x7mm Surface Mount Temperature Compensated Crystal Controlled Oscillator (TCXO) with LVCMOS output. Through the use of Analog Temperature Compensation the DV75C is capable of holding sub 1-ppm stabilities over the -40 to 85°C temperature range. The DV75C meets STRATUM 3 requirements.

Features:

- 3.3 Vdc Operation
- LVCMOS Output
- Frequency Stability: ± 0.28 ppm
- Temperature Range: -40 to 85°C
- Low Jitter <1ps RMS
- 5x7mm Surface Mount Package
- · Tape and Reel Packaging
- RoHS Compliant / Pb Free
 ✓ RoHS

Applications:

- IEEE 1588 Applications
- Synchronous Ethernet slave clocks, ITU-T G.8262 EEC options 1 & 2
- Compliant to Stratum 3, GR-1244-CORE, GR-253-CORE & ITU-T-G.812 Type IV
- Wireless Communications
- Small Cells
- Test and Measurement

Absolute Maximum Ratings

Absolute Maximum natings					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	85	°C	
Supply Voltage (Vcc)	-0.5	-	6.0	Vdc	
Input Voltage	-0.5	-	Vcc+0.5	Vdc	
Operating Specifications					

Operating Specifications					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Nominal Frequency (Fo)	-	10.0, 12.8 or 20.0	-	MHz	
Frequency Calibration @ 25 °C	-1.0	-	1.0	ppm	1
Frequency Stability vs. Temperature	-0.28	-	0.28	ppm	2
Holdover Stability (Over 24 Hours)	-0.32	-	0.32	ppm	3
Frequency vs. Load Stability	-0.20	-	0.20	ppm	±5%
Frequency vs. Voltage Stability	-0.20	-	0.20	ppm	±5%
Static Temperature Hysteresis	-	-	0.4	ppm	Absolute, 4
Total Frequency Tolerance:	-4.6	-	4.6	ppm	5
Operating Temperature Range:	-40	-	85	°C	
Supply Voltage (Vcc)	3.135	3.3	3.465	Vdc	±5%
Supply Current (Icc)	-	-	6	mA	
Period Jitter	-	3	5	ps rms	
Integrated Phase Jitter	-	0.5	1.0	ps rms	6
Typical Phase Noise Fo = 10.0 MHz					
SSB Phase Noise at 10Hz offset	-	-80	-	dBc/Hz	
SSB Phase Noise at 100Hz offset	-	-110	-	dBc/Hz	
SSB Phase Noise at 1KHz offset	-	-135	-	dBc/Hz	
SSB Phase Noise at 10KHz offset	-	-150	-	dBc/Hz	
SSB Phase Noise at 100KHz offset	-	-150	-	dBc/Hz	
Start-up Time	-	-	10	ms	

LVCMOS Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	15	-	рF	7
Voltage (High) (Voh)	90%Vcc	-	-	Vdc	
(Low) (Vol)	-	-	10%Vcc	Vdc	
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time 10% to 90%	-	-	8	ns	

H(V)-RoHS

Bulletin	Tx355
Page	1 of 3
Revision	03
Date	02 Dec 2012

Notes:

- 1. Initial calibration @ 25°C. Specifications at time of shipment after 48 hours of operation.
- 2. Frequency stability vs. change in temperature. [±(Fmax Fmin)/(2*Fo)].
- 3. Inclusive of frequency stability, supply voltage change (±1%), load change, aging, for 24 hours.
- 4. Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C.
- 5. Inclusive of calibration @ 25 C, frequency vs. change in temperature, change in supply voltage (±5%), load change (±5%), reflow soldering process and 20 years aging, referenced to Fo
- 6. BW = 12 KHz to 20 MHz.
- 7. For best performance it is recommended that the circuit connected to this output should have an equivalent input capacitance of 15pF.

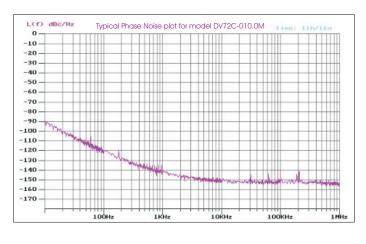
Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040

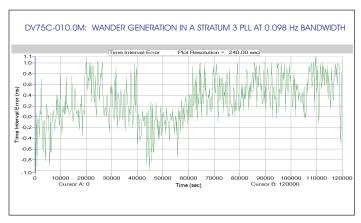
Package Characteristics

Package Hermetically sealed crystal mounted on a ceramic package

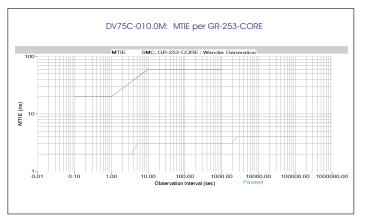
Environmental Characteristics

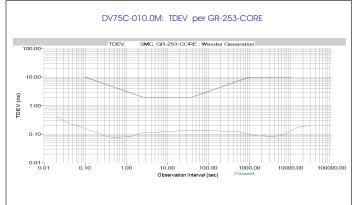

Shock: Mechanical Shock per Mil Std 883E Method 2002.4 Test Condition B.

Soldering Process; RoHS compliant lead free. See soldering profile on page 2.


Ordering Information

DV75C-010.0M, DV75C-012.8M, or DV75C-020.0M


Phase Noise Information

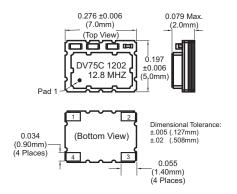

TIE

MTIE

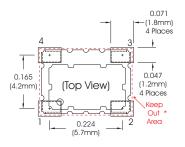
TDEV

Bulletin	Tx355
Page	2 of 3
Revision	03
Date	03 Dec 2013

WINFIELD

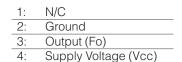

⊣(~

Fax: 630-851-5040

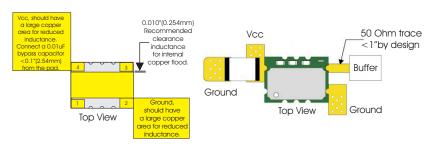

www.conwin.com

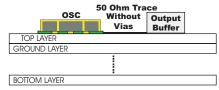
Phone: 630-851-4722

Package Layout



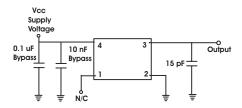
Suggested Pad Layout



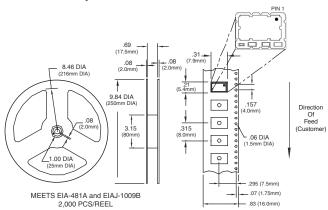

* Do not route any traces in the keep out area. It is recommended the next layer under the keep out area is to be ground plane.

Pad Connections

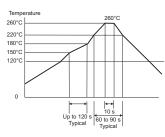
Design Recommendations



Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit connected to this TCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference.


Output Waveform

Test Circuit


Tape and Reel Dimensions

Revision History

Revision 00	Data sheet released 01/11/12
Revision 01	Removed tri-state information from features and description. 11/26/12.
Revision 02	Added "Applications", Phase noise, TIE, MTIE and TDEV plots. 04/15/13.
Revision 03	Removed TR information from Ordering Information 12/03/13

Solder Profile

Meets IPC/JEDEC J-STD-020C

Bulletin	Tx355
Page	3 of 3
Revision	03
Date	03 Dec 2013