NI PXI-5671

- 250 kHz to 2.7 GHz
- 16-bit resolution, 100 MS/s arbitrary waveform generation (400 MS/s interpolated)
- 32, 256, or 512 MB memory
- 20 MHz real-time bandwidth
- High-stability time base (10 MHz OCXO)
- ±20 ppb frequency stability
- ±50 ppb frequency accuracy
- •-145 dBm to +10 dBm output power

Operating Systems

•Windows 2000/XP

Recommended Software

- LabVIEW
- · LabWindows/CVI

Application Software (included)

Modulation Toolkit for LabVIEW

Driver Software (included)

NI-RFSG

NEW

Overview

The National Instruments PXI-5671 is a 2.7 GHz RF vector signal generator module with quadrature digital upconversion. Digital upconversion provides a more efficient means of waveform generation resulting in a tremendous reduction in download and signal generation time. The NI PXI-5671 provides 16-bit resolution arbitrary waveform generation at 100 MS/s (400 MS/s interpolated), up to 512 MB of memory, and 20 MHz real-time bandwidth. The PXI-5671 can generate custom and standard modulation formats such as AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, and QAM.

The Modulation Toolkit for LabVIEW accompanies the PXI-5671, providing functions and tools for signal generation, analysis, visualization, and processing of custom and standard digital and analog modulation formats.

The combined functionality of the PXI-5671 and the Modulation Toolkit deliver a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as for emerging areas including software-defined radio, radio-frequency identification (RFID), and wireless sensor networks.

Hardware

The PXI-5671 provides vector signal generation from 250 kHz to 2.7 GHz over a wide range of signal levels from -145 dBm to +10 dBm in a compact, 3 slot 3U module. It follows industry-standard plug and play specifications for the PXI bus and can be seamlessly integrated with compliant systems.

The PXI-5671 features an onboard ultrahigh-stability oven-controlled crystal oscillator (OCXO), which provides frequency stability of ± 20 ppb and frequency accuracy of ± 50 ppb. These

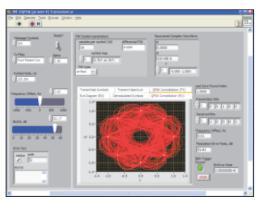


Figure 1. Modulation Toolkit for LabVIEW Displaying $\pi/4$ DQPSK

specifications make it useful for a range of automation applications. A sophisticated calibration scheme is implemented in the PXI-5671 to ensure power level accuracy over varying temperatures from 0 to 55 °C. This feature is important to many applications, especially in manufacturing environments where the stable operation over varying temperature ranges is critical.

Software

The PXI-5671 is shipped with the NI-RFSG instrument driver and the Modulation Toolkit for LabVIEW. NI-RFSG is a fully functional instrument driver, compatible with a variety of application software environments such as NI LabVIEW, LabWindows/CVI, and C. NI-RFSG features easy-to-use functions for configuring the timing and synchronization, CW tone, and arbitrary waveform generation capabilities of the PXI-5671. Also included are a number of interactive, instructional examples and interactive online help that can help jump-start your application test development.

The Modulation Toolkit for LabVIEW provides functions for signal generation, analysis, and visualization of custom and standard analog and digital modulation. With the Modulation Toolkit, you can also develop and analyze custom modulation formats and generate these with the PXI-5671. Some of the standard measurement functions include EVM (error vector magnitude), MER (modulation error ratio), and p (rho). Functions are also available for injecting impairments including IQ Gain Imbalance, Quadrature Skew, and AWGN (additive white Gaussian noise). Visualization functions include trellis, constellation, and 2D and 3D eye diagrams. This hardware and software combination gives you access to customizable functionality not available in traditional instrumentation.

NI Modulation Toolkit Functions¹

Modulation/Demodulation

- AM, FM, PM
- · ASK, FSK, PSK
- · MSK, GMSK
- PAM, QAM
- BPSK, QPSK, OQPSK, DQPSK, π/4DQPSK

Modulation Analysis Functions

- ρ (rho)
- DC offset
- · Phase error
- · Quadrature skew
- · IQ gain imbalance
- Bit error rate (BER)
- Frequency deviation
- · Burst timing measurements
- Modulation error ratio (MER)
- Error vector magnitude (EVM)

Visualization and Analysis

- · Trellis diagrams
- · Constellation plot
- 2D and 3D eye diagrams

Modulation Impairments

- Multitone
- DC offset
- · Fading profile
- · Frequency offset
- · Quadrature skew
- IQ gain imbalance
- · Additive white Gaussian noise (AWGN)
- · Phase noise

¹A Modulation Toolkit datasheet is available separately.

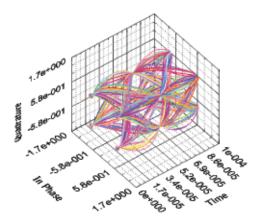


Figure 2. A 3D IQ plot created by the Modulation Toolkit visually separates the I and Q components for this PSK modulated signal.

Figure 3. RF test system - PXI-5671 and PXI-5660

Superior Flexibility

Providing customers with a flexible platform is necessary to meet the needs of today's complex, rapidly evolving systems. The PXI-5671 consists of two components - the NI PXI-5610 2.7 GHz RF upconverter and the NI PXI-5441 arbitrary waveform generator, a high-spectral-purity baseband signal generator with onboard signal processing. The PXI-5610 and the PXI-5441 work together to provide vector signal generation from 250 kHz to 2.7 GHz. Because of the flexible hardware and software, and with access to low-level driver functionality, the PXI-5610 and the PXI-5441 can also be used independently for RF upconversion and arbitrary waveform sequencing. For advanced applications, combine additional modular instruments in the same PXI chassis with the PXI-5671 and take advantage of the tight synchronization between PXI modules. For example, combine the PXI-5660 RF Vector Signal Analyzer with the PXI-5671 to build an RF communications test system with complete modulation and demodulation capabilities.

Calibration

The PXI-5610 and the PXI-5441 are calibrated separately by National Instruments with NIST-traceable and ISO-9002-certified calibration certificates. Temperature variations are calibrated and corrected during normal operation resulting in very high stability and repeatability.

Specifications-

Valid over specified Operating Environment (0 to 55 °C) unless otherwise stated.

•		
Ger	nei	raı

Frequency Characteristics

quee, eee.	
Frequency range	250 kHz to 2.7 GHz
Frequency minimum (performance below	
250 kHz not guaranteed)	9 kHz
Real-time bandwidth (Digital vector	
modulation bandwidth)	20 MHz
Locking range	5 Hz minimum
Warm-up time (typical)	30 minutes
Frequency resolution (dependent on NI PXI-544	1 memory)
32 MB	355 nHz

Tuning Speed

Sine wave, 50 Hz tolerance	
Thermal correction disabled	35 ms typical
Thermal correction enabled	50 ms max
1 MS record, phase continuity off	
Digital IF equalization off	340 ms typical 370 ms ma
Digital IF equalization on	950 ms typical 1.6 s max

Note: The NI PXI-5671 tuning speed and tuning resolution depend on resampling done by the PC. This means that fine resolution tuning speed is dependent on the speed and memory of the computer. Specifications below are the result of using an NI PXI 8186 Pentium IV controller 2.2 GHz with 1 GB RAM with the Windows XP operating system and NI-RFSG phase continuity disabled.

Internal Frequency Reference

Frequency	10 MHz
Temperature stability	±20 ppb max (referenced to 25 °C)
Aging	
Per year	±100 ppb
Per day	±1 ppb
Initial achievable accuracy	±50 ppb
Lock time for the 5610	
to ext frequency reference	5 s max
Locking range	5 Hz minimum
Reference Input	50 Ω SMA female
Input amplitude	-5 to +16 dBm
Input frequency range	10 MHz ± 0.5 ppm
Reference Output	50 Ω SMA female
Signal	Square wave
Output Frequency	10 MHz
Output Amplitude	6.7 dBm into 50 Ω load, fundamental frequency
	(1± 0.1 Vpp sine wave)

Spectral purity

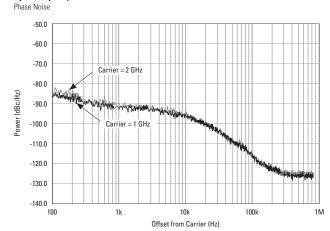


Figure 1. Typical Phase Noise at 1 GHz with Real-Time Bandwidth ≤10 MHz

Offset Frequency	Carrier Frequency = 1 GHz	Carrier Frequency = 2 GHz
100 Hz	-82 dBc/Hz maximum	-79 dBc/Hz maximum
1 kHz	-85 dBc/Hz maximum	-83 dBc/Hz maximum
10 kHz	-93 dBc/Hz maximum	-92 dBc/Hz maximum
100 kHz	-110 dBc/Hz maximum	-110 dBc/Hz maximum

Real-time bandwidth >10 MHz				
Offset Frequency	Carrier Frequency = 1 GHz	Carrier Frequency = 2 GHz		
100 Hz	-72 dBc/Hz maximum	-70 dBc/Hz maximum		
1 kHz	-75 dBc/Hz maximum	-72 dBc/Hz maximum		
10 kHz	-98 dBc/Hz maximum	-96 dBc/Hz maximum		
100 kHz	-116 dBc/Hz maximum	-116 dBc/Hz maximum		

Residual FM	4.5 Hz rms maximum (continuous wave,
	300 Hz to 3 kHz integration handwidth)

Spurious Responses	
Second harmonic (>10 MHz) 0 to 55 °C	-40 dBc maximum
Output third-order distortion (IMD)	
(two -3 dBm tones, >200 kHz apart)	-75 dBc typical
Residual spurious response	
(no input signal, 0 dB attenuation/maximur	n
power level, excluding LO feedthrough)	<80 dBc typical
NI PXI-5441 system clock rate	100 MHz
Harmonic and spurious response	-105 dBm typical
Output-related spurious	
response (nonharmonic)	-80 dBc maximum
(IF - RF output frequency)	-64 dBc typical, -58 dBc maximum

Close-in Spurious Responses (Carrier-Modulated)

Spurious Response

Real-Time Bandwidth	Offset from Carrier	Maximum Power (dBc)
≤10 MHz	<100 Hz	-50
	100 Hz to 10 kHz	-60
>10 MHz	<400 Hz	-40
	100 Hz to 2 kHz	-50

RF Output Characteristics

Output power range	-145 dBm to +10 dBm minimum
Amplitude resolution	
PXI-5671	0.02 dB minimum
PXI-5610	1 dB typical
Amplitude settling time PXI-5610	
NI 5610	0.1 dB within 5 ms, typical
NI 5441	0.1 dB within 30 ms, typical

Level Accuracy

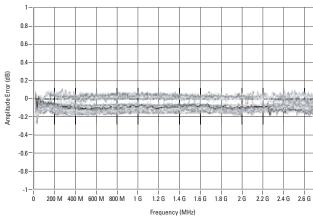


Figure 2. Typical Output Power Level Accuracy from -45 dBm to +10 dBm

Outnut Power Range

	output i ottoi ilango			
Output Frequency	+7 to -30 dBm	-30 to -80 dBm	-80 to -127 dBm	<-127 dBm (typical)
250 kHz to 10 MHz	±1.2 dB	±1.3 dB	±1.5 dB	±2 dB
10 MHz to 2.7 GHz	±0.7 dB	±0.8 dB	±1 dB	±1.5 dB

Accuracy degrades by < 0.03 dB per °C over full temperature range.

Accuracy degrades by 0.1 dB per dB above +7 dBm power levels, and by 0.15 dB per dB above +10 dBm power levels. At nonsystem spur frequencies. Refer to the Spurious Responses section for more information.

Voltage Standing Wave Ratio (VSWR)	
10 MHz to 2.3 GHz	1.6:1
2.3 to 2.7 GHz	1.7:1

Output 1 dB Gain Compression Point (minimum)

Output Frequency (GHz)	15 to 35 °C (dBm)	0 to 55 °C (dBm)
Up to 2.0	16	14.5
2.0 to 2.5	14	12.5
2.5 to 2.7	13	11.5

Noise density (0 dBm output)

Output Power Level (dBm)	15 to 35 °C (dBm/Hz)	0 to 55 °C (dBmHz)
0	-120	-115
-20	-140	-135

Typical Noise Floor at 2 GHz

Output Power Level (dBm)	Typical Noise Floor (dBm/Hz)
-57	-158
-50	-157
-40	-154
-30	-147
-20	-140
-10	-130
0	-120
10	-110

Vector modulation bandwidth flatness	±0.5 dB typical ¹
Group delay variation (within the vector modulation bandwidth)	. 20 4
	±20 ns typical
Group delay	
PXI-5441	750 ns typical
PXI-5610	1200 ns typical
Overload protection on RF output	
Maximum reverse RF power	4 W
Maximum DC input	±50 VDC
¹ Equilization enabled. ±1.8 dB maximum with equilization	n disabled.

Local Oscillator Output

Frequency range	3.2 to 5.9 GHz
Output power	-22 dBm (typical)
\/C\A/R	1 5:1 maximum

Phase noise - Local Oscillator

	Carrier Frequency		
Offset Frequency (kHz)	3.2 GHz (dBc/Hz)	4.2 GHz (dBc/Hz)	5.2 GHz (dBc/Hz)
1	-89	-88	-85
10	-98	-98	-95
100	-120	-120	-120

FM Modulation

FM Distortion (modulation frequency 1 kHz, carrier frequency 1 GHz, FM deviation 100 kHz,

filter bandwidth 2 MHz...... <1% Typical

Digital Modulation

QPSK, 16-QAM, 64-QAM (root raised cosine Filter, alpha = 0.25, carrier frequency = 1 GHz, 2,000 symbol PRBS, equalization: ON)

Symbol Rate	EVM (%)	MER (dB)
200 kS/s	1.0	37.0
1 MS/s	1.0	37.0
2.56 MS/s	1.0	37.0
5.12 MS/s	1.0	37.0
10 MS/s	1.2	36.0

Power Requirements

Typical	+3.3 VDC	+5 VDC	+12 VDC	-12 VDC	Total Power
PXI-5610	150 mA	2.6 A	900 mA	60 mA	25.0 W
PXI-5441	150 mA	2.6 A	900 mA	60 mA	25.0 W

Calibration

Self-calibration	
PXI-5610	Correction for YIG offset and gain
PXI-5441	Correction for DC gain offset and timing errors
External calibration interval	
PXI-5610	1 year
DVI 5/1/1	2 years

Physical

PXI-5610 (2 slots)	10 by 16 cm (3.9 by 6.3 in.
PXI-5441 (1 slot)	10 by 16 cm (3.9 by 6.3 in.)

17/1-5441 (1 3lot)	
Environmental	
Operating Environment	
Operating temperature	
(Tested in accordance with IEC-60068-2-1 and IEC-60068	2-2)1
Relative humidity	
(Tested in accordance with IEC 60068-2-56)	
Altitude (indoor use only) 0 to 2,000 m (at 25 °C ambient temperature)	
Storage Environment	
Ambient temperature20 to 70 °C	
(Tested in accordance with IEC-60068-2-1 and IEC-60068	2-2.)
Relative humidity	
(Tested in accordance with IEC-60068-2-56.)	
Shock and Vibration	
Nonoperational shock	
(Tested in accordance with IEC-60068-2-27. Test profi	е
developed in accordance with MIL-PRF-28800F.)	
Random vibration Non-operating	
(Tested in accordance with IEC-60068-2-64. Non-open	ating
test profile exceeds the requirements of MIL-PRF-288	JF,
Class B)	

¹When installed in the NI PXI-101x or PXI-1000B chassis, the PXI-5441 operating temperature is 0 to +45 °C

Certifications and Compliances

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1
- CAN/CSA C22.2 No. 61010-1

Electromagnetic Compatibility

Emissions	EN 55011 Class A at 10 m FCC Part 15A above 1 GHz
Immunity	EN 61326:1997 + A2:2001, Table 1
EMC/EMI	CE, C-Tick and FCC Part 15 (Class A) Compliant

Ordering Information

NI PXI-5671

N1 FAI-30/1	
32 MB memory.	779079-02
256 MB memory	779079-03
512 MB memory	779079-04
Includes PXI-5610, PXI-5441, NI-RFSG, Modulation Toolkit for LabVIEW,	
and cables.	

BUY NOW!

For complete product specifications, pricing, and accessory information, call (800) 813-3693 (U.S. only) or go to ni.com/rf.

NI Services and Support

NI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services.

Training and Certification

NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training.

Professional Services

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide NI Alliance Partner Program of more than 600 independent consultants and

integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

OEM Support

We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Local Sales and Technical Support

In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support.

We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp.

Hardware Services NI Factory Installation Services

NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor.

Calibration Services

NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration.

Repair and Extended Warranty

NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services.

ni.com • (800) 813 3693

National Instruments • info@ni.com