

HL9407 Broadband Balun (67 GHz)

The HL9407 is a signal splitter and combiner that offers industry-leading amplitude and phase match from 5 MHz to 67 GHz at -3 dB.

It is suitable for use in 40+ Gbps communications systems, high-speed analog-to-digital conversion, frequency response testing for differential devices, and many other applications.

Features and Technical Specifications

Bandwidth (-3 dB)	5 MHz to 67 GHz
Amplitude Match (typical)	± 0.1 dB to 30 GHz
	± 0.25 dB to 67 GHz
	See Fig. 3 below
Phase Match (typical)	± 2-4° to 20 GHz
	± 4-8° to 50 GHz
	See Fig. 4 below
Rise time	10.5 ps (combined)
Insertion Delay	278 ps
Insertion Loss	-6 dB
Return Loss	See Fig. 5 below
VSWR (typical)	See Fig. 6 below
CMRR (typical)	> 70 dB at 10 MHz
	> 30 dB at 50 GHz
	See Fig. 7 below
Max Input Power	+30 dBm
Impedance	50 Ω In, 2 x 50 Ω Out
Connectors	1.85 mm; 3x Jack/Female
Dimensions	60.80 x 38.1 x 13.87 mm
	2.39" x 1.50" x 0.55"
Weight	45 g (1.6 oz)
Temperature Limits	0° to +40° C, operating
	-40° to +85° C, storage
RoHS Compliance	RoHS compliant; made with lead-free solder
Warranty	1 year, see website

Figure 1: HL9407 Broadband Balun

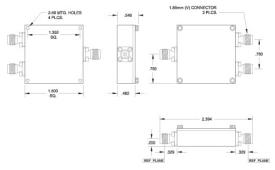


Figure 2: HL9407 Dimensional Drawing

Deployment Notes

Although the HL9407 ports are labeled as RF In/Out, this device is bidirectional and can be used either as a signal splitter or combiner.

If the DC voltage of the input or output is not zero, DC block capacitors are required.

Additional Data

Higher-resolution versions of the charts on the following pages are available on our website, along with S-parameter files with single-ended (to 67 GHz) and mixed mode (to 50 GHz) data.

HYPERLABS HL9407 Datasheet (page 2)

HL9407 Bandwidth

Bandwidth is defined as the range of frequencies where insertion loss is within -3 dB of the reference.

The HL9407 reference signal is -6 dB. *Figure 3* below shows better than -9 dB insertion loss up to 67 GHz when the device is used as a signal splitter.

HL9407 Amplitude Match

Amplitude match is a comparison between the signals on the RF Out +/- ports of a balun used as a signal splitter. This specification is derived from the insertion loss (in dB) of the output ports.

Figure 3 below shows typical HL9407 insertion loss from 5 MHz to 67 GHz when the device is used as a signal splitter. Vertical scale is -5.25 to -9.25 dB.

The amplitude balance can be seen by comparing the non-inverting output (blue trace), with the inverting output (red trace).

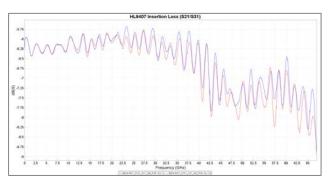


Figure 3: Typical insertion loss of the HL9407 when used as a signal splitter

When the HL9407 is used as a combiner, mixed mode parameters provide additional information on device performance.

For more on the HL9407 performance as a signal combiner, please see the section titled "HL9407 Mixed Mode Data" on the following page.

HL9407 Phase Match

The HL9407 is a 180° balun, so the phase match of the RF Out+ and RF Out- ports is specified to degrees from 180°.

Match is dependent on the delay of the output ports. For example, 2 degree mismatch at 10 GHz requires the delays be within ≈ 0.5 ps of each other. Phase mismatch increases with frequency.

Figure 4 below shows phase mismatch between the RF Outputs from 5 MHz to 67 GHz. The vertical range is 0-12°.

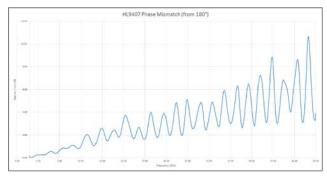


Figure 4: HL9407 phase match, represented as degrees from 180°

HL9407 Return Loss Measurements

In *Figure 5*, return loss on the HL9407 RF Input is shown from 5 MHz to 67 GHz. The vertical axis is dB (-7.5 to -45).

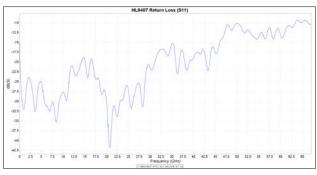


Figure 5: Typical return loss on RF In port of the HL9407

Mixed mode S-parameters are informative when the HL9407 is used as a combiner. Please see "HL9407 Mixed Mode Data" section on the following page.

HYPERLABS HL9407 Datasheet (page 3)

HL9407 VSWR

The typical Voltage Standing Wave Ratio (VSWR) of the HL9407 is shown in *Figure 8* below.

The blue and orange traces show typical VSWR on the RF In and RF Out+ ports, respectively.

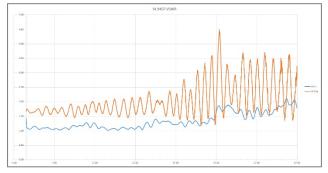


Figure 6: Typical VSWR of HL9407 RF Input and RF Out+

HL9407 CMRR

The exceptional Common Mode Rejection Ratio (CMRR) of the HL9407 allows it to be used as a signal combiner as well as a splitter.

Figure 7 shows the CMRR of the HL9407 when used to combine a differential signal from a 50 GHz VNA source.

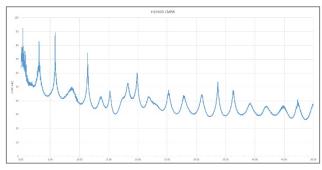


Figure 7: HL9407 CMRR (to 50 GHz)

HL9407 Mixed Mode Data

The unique design of HYPERLABS baluns allows the HL9407 to be used as a signal combiner as well as a signal splitter.

In combiner mode, the balun converts a differential source signal into a single-ended output, minimizing common mode noise and harmonic distortion.

For this reason, HL9407 combiner performance is best characterized from mixed mode S-parameters using a 4-port VNA as a differential source.

Full mixed mode data for the HL9407 (to 50 GHz) is found in the S-parameters file available on the HYPERLABS website.