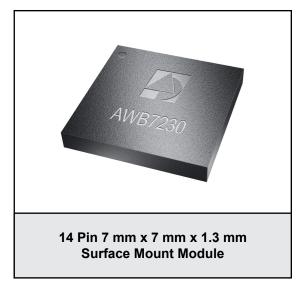
AWB7230

3.40 GHz to 3.80 GHz

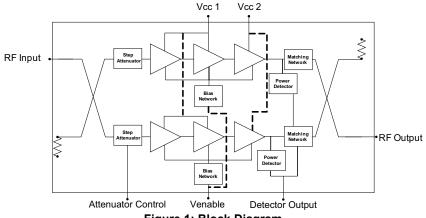
Small-Cell Power Amplifier Module PRELIMINARY DATA SHEET - Rev 1.4



FEATURES

- InGaP HBT Technology
- 2.5% EVM @ +29 dBm (OFDMA)
- 31 dB Gain
- Integrated Step Attenuator
- Integrated Output Power Detector
- High Efficiency
- Low Transistor Junction Temperature
- Matched for a 50 Ω System
- Low Profile Miniature Surface Mount Package; RoHS Compliant

APPLICATIONS


- WiMAX and LTE Air Interfaces
- Picocell. Femtocell. Home Nodes
- Customer Premises Equipment (CPE)
- Data Cards and Terminals

PRODUCT DESCRIPTION

The AWB7230 is a fully matched, Multi-Chip-Module (MCM) designed for picocell, femtocell, and customer premises equipment (CPE) applications. Its high linearity and efficiency meet the extremely demanding needs of small cell infrastructure architectures. Designed for WiMAX and LTE air interfaces operating in the 3.40 GHz to 3.80 GHz band, the AWB7230 delivers up to +29 dBm of WiMAX power with exceptionally low EVM. It operates from a convenient

+4.5 V supply and provides 31 dB of gain. The device is manufactured using an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. The self-contained 7 mm x 7 mm x 1.3 mm surface mount package incorporates RF matching networks optimized for output power, efficiency, and linearity in a 50 Ω system.

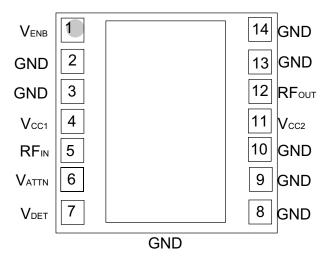


Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION	
1	V _{ENB}	PA Enable Voltage	
2	GND	Ground	
3	GND	Ground	
4	V _{CC1}	Supply Voltage	
5	RFℕ	RF Input	
6	V _{ATTN}	Attenuator Control	
7	V_{DET}	Detector Output	
8	GND	Ground	
9	GND	Ground	
10	GND	Ground	
11	V _{CC2}	Supply Voltage	
12	RFout	RF Output	
13	GND	Ground	
14	GND	Ground	

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (Vcc)	0	+5	V
Enable Voltage (VENB)	0	+3.2	V
Attenuator Control Voltage (VATTN)	0	+3.7	V
RF Output Power (Роит)	-	+32	dBm
ESD Rating Human Body Model ⁽¹⁾ Charged Device Model ⁽²⁾	Class 1C Class IV	1 1	
MSL Rating (3)	4	-	
Junction Temperature (T _j)	-	+150	°C
Storage Temperature (Tstg)	-40	+150	°C

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

- Notes:
- (1) JEDEC JS-001-2010.
- (2) JEDEC JESD22-C101D.
- (3) 260 °C peak reflow.

Table 3: Operating Ranges

MIN	TYP	MAX	UNIT	COMMENTS
3400	-	3800	MHz	
+3.3	+4.5	+4.65	V	
+2.7 0	+2.85	+3.1 +0.5	V	PA "on" PA "shut down"
+2.3 0	1 1	+3.7 +0.7	> >	Attenuator Enabled Attenuator Disabled
1	+29	-	dBm	
-40	-	+85	°C	
	3400 +3.3 +2.7 0 +2.3 0	3400 - +3.3 +4.5 +2.7 +2.85 0 - +2.3 - 0 - +2.9	3400 - 3800 +3.3 +4.5 +4.65 +2.7 +2.85 +3.1 0 - +0.5 +2.3 - +3.7 0 - +0.7 - +29 -	3400 - 3800 MHz +3.3 +4.5 +4.65 V +2.7

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: Electrical Specifications - 16 QAM Pusc Zone (Tc = +25 °C, Vcc = +4.5 V, VenB = +2.85 V, 50 Ω system)

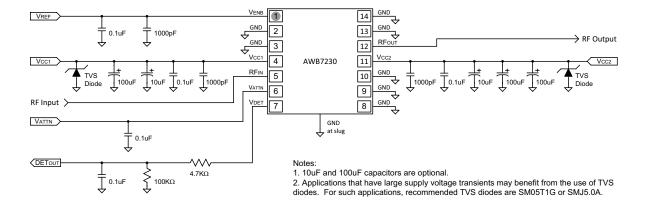
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain (2)	27	31	37	dB	
Attenuation	17	19	24	dB	VATTN = 2.5 V
Spectrum Mask (1), (2) @ offset A @ offset B @ offset C @ offset D	- - -	- - -	-51.37 -40.5 -50.5 -50.5	dBc	10 MHz Channel Bandwidth WiMAX Forum Band Class 5C MMRT
Power-Added Efficiency (1), (2)	14	16	-	%	
Thermal Resistance (RJc) (3)	-	13	-	°C/W	Junction to Case
Collector Current (Icc) (1), (2)	900	1080	1200	mA	total through Vcc pins
EVM (2)	1	2.5	3.5	%	
Power Detector Output @ 29 dBm	-	1.5	-	V	RL (Load Resistor) = 100K Ω
Quiescent Current (Icq)	250	350	400	mA	
VENB Current	-	0.6	2	mA	through VENB pin
Leakage Current	-	500	-	μΑ	Vcc = +4.5 V, VREF = 0 V
Harmonics ⁽²⁾ 2fo, 4fo 3fo	1 1	-50 -55	-45 -50	dBc	
Input Return Loss	1	-15	-9	dB	
Spurious Output Level (2) (all spurious outputs)	-	-	-60	dBc	Pout ≤ +29 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all voltage and temperature operating ranges
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Vcc = +4.5 V, Pout = +29 dBm Applies over full operating temperature range

Notes:

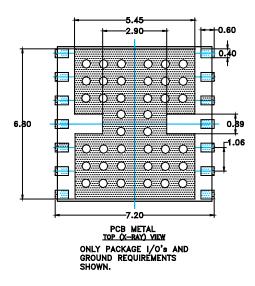
⁽¹⁾ Spectrum Mask and Efficiency measured at 3600 MHz.

⁽²⁾ $P_{OUT} = +29 \text{ } dBm.$

⁽³⁾ Use only Vcc2 (pin 11) current when calculating device junction temperature.


AWB7230

APPLICATION INFORMATION


To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the VENB voltage.

Figure 3: Application Circuit Schematic

NOTES:

- (1) UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES SHOWN.
- (2) DIMENSIONS IN MILLIMETERS.
- (3) VIAS SHOWN IN PCB METAL VIEW ARE FOR REFERENCE ONLY. NUMBER & SIZE OF THERMAL VIAS REQUIRED DEPENDENT ON HEAT DISSIPATION REQUIREMENT AND THE PCB PROCESS CAPABILITY.

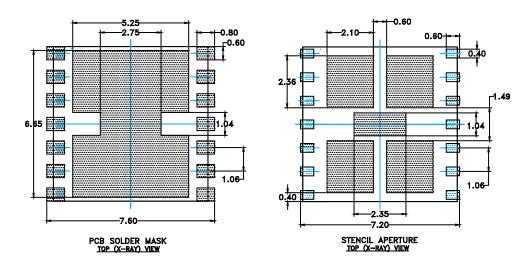


Figure 4: PCB Footprint

PACKAGE OUTLINE

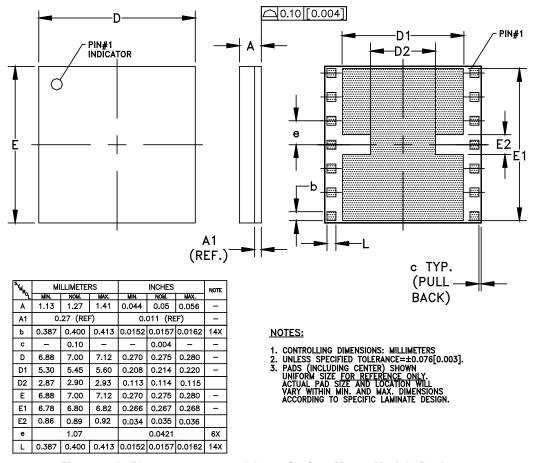


Figure 5: 14 Pin 7 mm x 7 mm x 1.3 mm Surface Mount Module Package

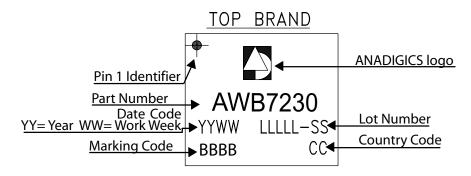


Figure 6: Branding Specification

COMPONENT PACKAGING

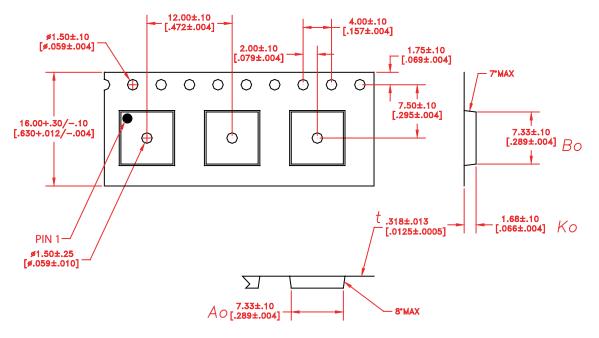


Figure 7: Tape & Reel Packaging

Table 5: Tape & Reel Dimensions

PACKAGE TYPE TAPE WIDTH		POCKET PITCH	REEL CAPACITY	MAX REEL DIA
7 mm x 7 mm x 1.3 mm	16 mm	12 mm	2500	13"

AWB7230

ORDERING INFORMATION

ORDER	TEMPERATURE	PACKAGE	COMPONENT PACKAGING
NUMBER	RANGE	DESCRIPTION	
AWB7230P8	-40 °C to +85 °C	RoHS-compliant 14 Pin 7 mm x 7 mm x 1.3 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

