

Rev. V1

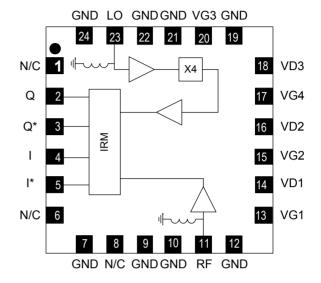
Features

- Integrates Image Reject (Balanced) Mixer, LO Buffer, LO Quadrupler and RF Buffer
- 13 dB Conversion Gain
- 3.8 dB Noise Figure
- 2 dBm Input Third Order Intercept (IIP3)
- 30 dBm Average Two-Tones Input Second Order Intercept (IIP2)
- 25 dBm Input Second Order Intercept (IIP2 IF/2)
- 25 dBc Image Rejection
- 12 dB RF and 15 dB LO Return Loss
- Lead-Free 4 mm, 24 Lead QFN Package
- RoHS[^] Compliant

Description

The MADC-011010 is an integrated LSB/USB receiver that has a noise figure of 3.8 dB and a typical conversion gain of 13 dB. The device integrates a four stage LNA followed by an image rejection mixer, and includes an integrated LO quadrupler and buffer amplifier within a 4 mm QFN package. The I/Q and complementary I*/Q* mixer outputs are provided, and two external 180° hybrids and one external 90° hybrid are required to complete the image rejection function.

The MADC-011010 is ideally suited for 38 GHz band point to point radios.


Each device is 100% RF tested to ensure performance compliance.

Ordering Information^{1,2}

Part Number	Package	
MADC-011010-TR0500	500 Piece Reel	
MADC-011010-001SMB	Sample Evaluation board	

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 3 loose parts.

Functional Schematic

Pin Configuration³

Pin No.	Function	Pin No.	Function	
1	N/C	13	V _G 1	
2	Q	14	V _D 1	
3	Q*	15	V _G 2	
4	I	16	V _D 2	
5	I *	17	V _G 4	
6	N/C	18	V _D 3	
7	GND	19	GND	
8	N/C	20	V _G 3	
9	GND	21	GND	
10	GND	22	GND	
11	RF	23	LO	
12	GND	24	GND	
		25	Paddle ⁴	

- MACOM recommends connecting all N/C (no connection) package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

[^] Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

MADC-011010

Down Converter 37 - 40 GHz

Rev. V1

Electrical Specifications⁵: LO = 4 dBm, T_A = +25°C

 $V_D1 = V_D2 = V_D3 = 3 \text{ V}, I_D1 = 30 \text{ mA}, I_D2 = 100 \text{ mA}, I_D3 = 150 \text{ mA}$

Parameter	Units	Min.	Тур.	Max.
Frequency Range (RF)	GHz	37	_	40
Frequency Range (LO)	GHz	8.375	_	10.875
Frequency Range (IF)	GHz	DC	_	3.5
LO Input Power (PLO)	dBm	_	4	_
USB Conversion Gain (IF = 2 GHz)	dB	10	13	_
USB Noise Figure (IF = 2 GHz)	dB	_	3.8	_
Image Rejection	dBc	_	25	_
Input IP3	dBm	_	2	_
Input IP2 (IF/2)	dBm	_	25	_
Average Two-Tones Input IP2 (ZIF)	dBm	_	30	_
RF Return Loss	dB	_	12	_
LO Return Loss	dB	_	15	_
IF Return Loss	dB	_	15	_
Current, Drain 1 (I _D 1)	mA	_	30	_
Current, Drain 2 (I _D 2)	mA	_	100	_
Current, Drain 3 (I _D 3)	mA	_	150	_
Gate Voltage (V _G 4)	V	_	-2.5	_
Drain Voltage on each IF port	V	_	0.3	_

^{5.} Apply gate voltages prior to drain voltages. Adjust V_G1 , V_G2 and V_G3 between -1.0 and -0.1 V to achieve specified drain current. Typical current 280 mA = 30 (I_D1) + 100 (I_D2) + 150 (I_D3) mA. Refer to App Note [1] for biasing details.

MADC-011010

Down Converter 37 - 40 GHz

Rev. V1

Absolute Maximum Ratings^{6,7}

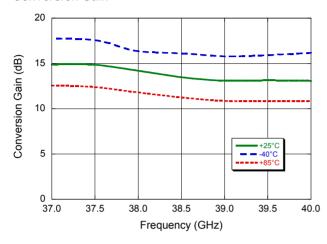
Parameter	Absolute Maximum		
Drain Voltage	+4.3 V		
Gate Bias Voltage (V _G 1,2,3)	-1.5 V < V _G < +0.3 V		
Gate Bias Voltage (V _G 4)	-4.0 V < V _G < 0 V		
Input Power	10 dBm		
LO Input Power	13 dBm		
Storage Temperature	-55°C to +150°C		
Operating Temperature	-40°C to +85°C		
Junction Temperature ^{8,9}	+150°C		

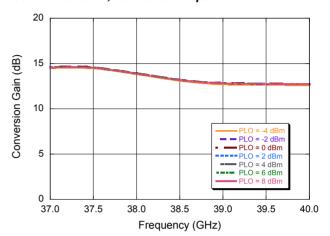
- 6. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 8. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 9. Junction Temperature $(T_J) = T_C + \Theta jc * (V * I)$ Typical thermal resistance $(\Theta jc) = 44 °C/W$.

Handling Procedures

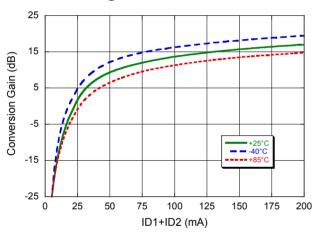
Please observe the following precautions to avoid damage:

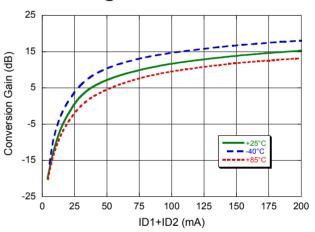
Static Sensitivity

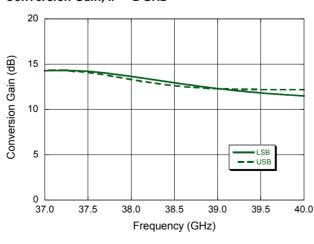

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

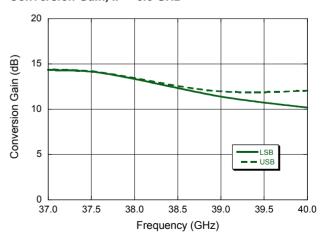

Rev. V1

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, PDC = 0.84 W

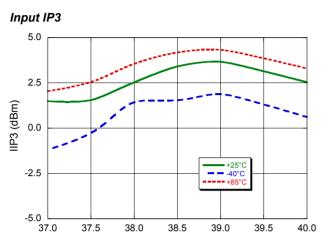

Conversion Gain

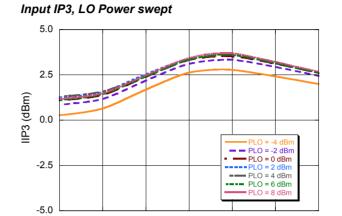

Conversion Gain, LO Power swept


Conversion Gain @ 37 GHz


Conversion Gain @ 40 GHz

Conversion Gain, IF = 2 GHz


Conversion Gain, IF = 3.5 GHz



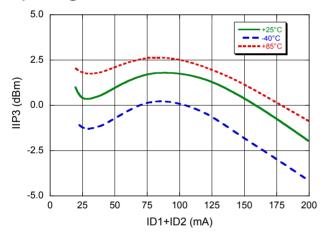
Rev. V1

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, PDC = 0.84 W

Frequency (GHz)

38.5

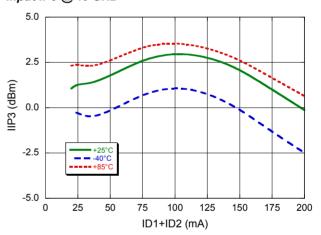
Frequency (GHz)

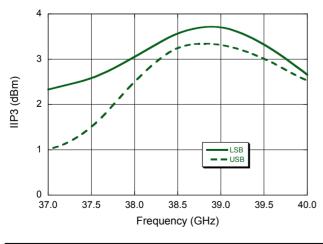

39.0

39.5

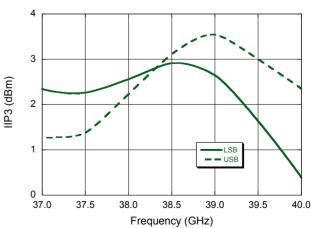
40.0

38.0


Input IP3 @ 37 GHz

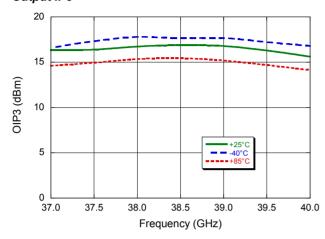

Input IP3 @ 40 GHz

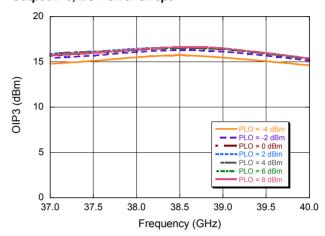
37.5


37.0

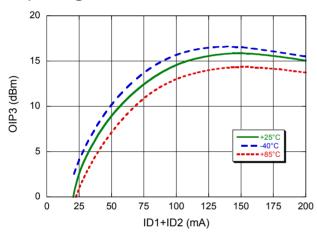
Input IP3, IF = 2 GHz

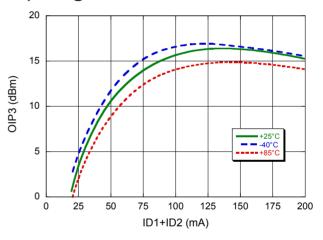
Input IP3, IF = 3.5 GHz

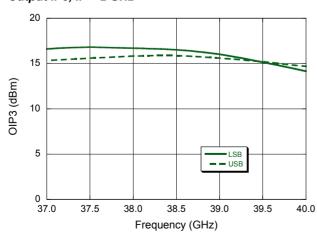


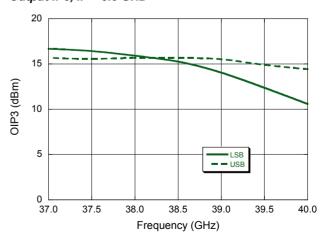

Rev. V1

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, PDC = 0.84 W



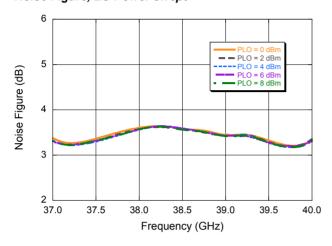

Output IP3, LO Power swept

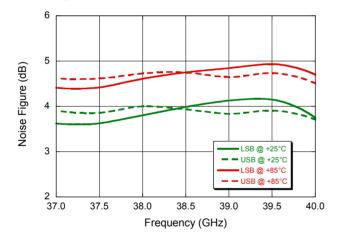

Output IP3 @ 37 GHz


Output IP3 @ 40 GHz

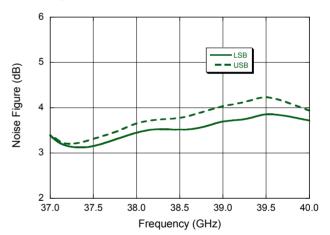
Output IP3, IF = 2 GHz

Output IP3, IF = 3.5 GHz



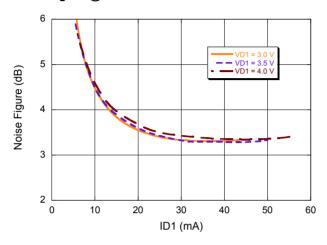

Rev. V1

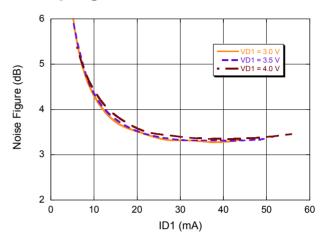
Typical Performance Curves: LO = 4 dBm, IF = 150 MHz, PDC = 0.84 W


Noise Figure, LO Power swept

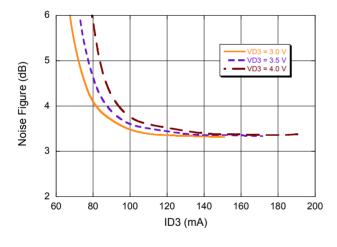
Noise Figure, IF = 2 GHz

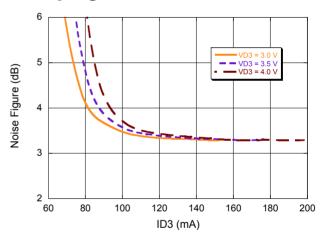
Noise Figure, IF = 3.5 GHz




Rev. V1

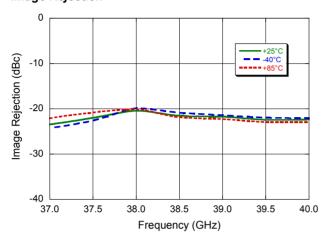
Typical Performance Curves: LO = 4 dBm, IF = 150 MHz, PDC = 0.84 W

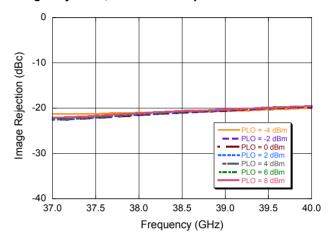

Noise Figure @ 37 GHz


Noise Figure @ 40 GHz

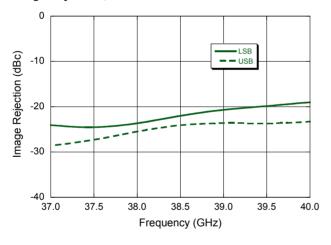
Noise Figure @ 37 GHz

Noise Figure @ 40 GHz




Rev. V1

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, PDC = 0.84 W


Image Rejection

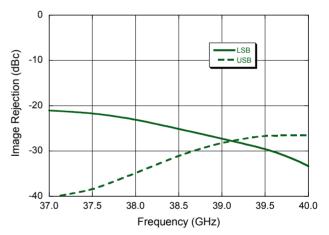

Image Rejection, LO Power swept

Image Rejection, IF = 2 GHz

Image Rejection, IF = 3.5 GHz

Rev. V1

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, PDC = 0.84 W

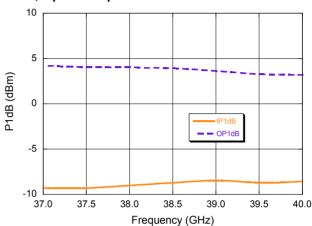
Pour vs. P_{IN}

10

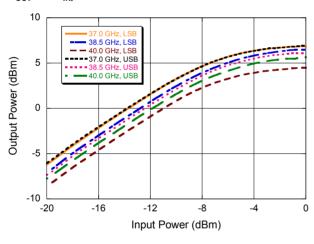
(mgp)

10

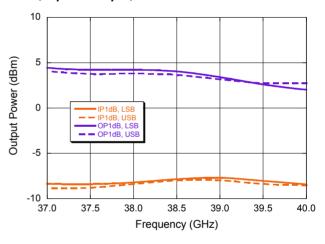
5

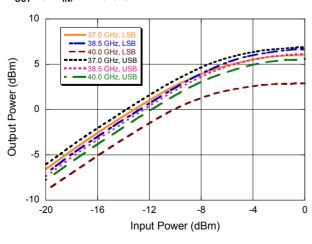

37.0 GHz

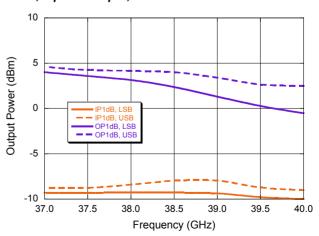
33.5 GHz


40.0 GHz

Input Power (dBm)

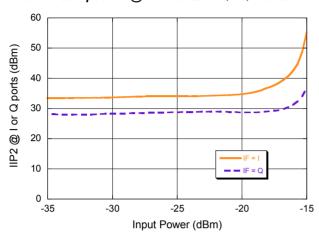

P1dB, Input & Output

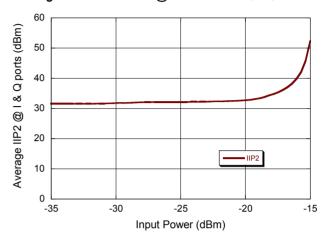

 P_{OUT} vs. P_{IN} , IF = 2 GHz


P1dB, Input & Output, IF = 2 GHz

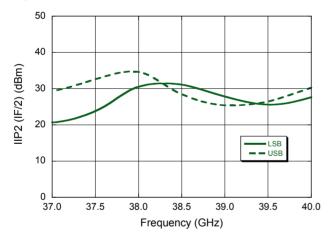
 P_{OUT} vs. P_{IN} , IF = 3.5 GHz

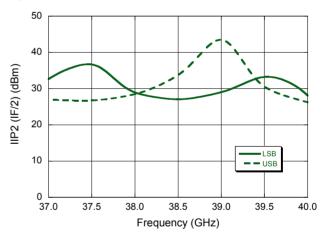
P1dB, Input & Output, IF = 3.5 GHz




Rev. V1

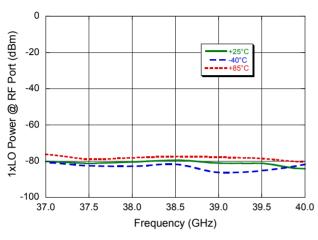
Typical Performance Curves: LO = 4 dBm, IF1 = 41 MHz, IF2 = 53 MHz, PDC = 0.84 W

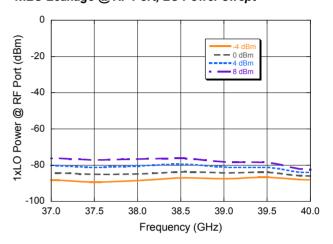

Two-Tones Input IP2 @ I - I* Ports or Q - Q* Ports


Average Two-Tones IIP2 @ I - I* Ports or Q - Q* Ports

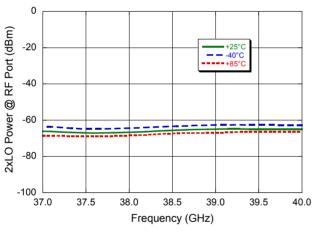
Input IP2 (IF/2), IF = 2 GHz

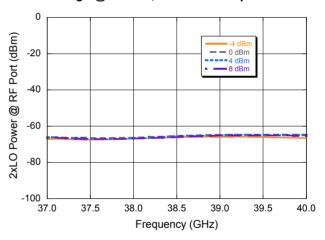
Input IP2 (IF/2), IF = 3.5 GHz

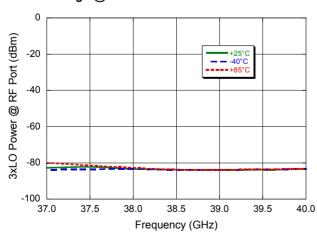


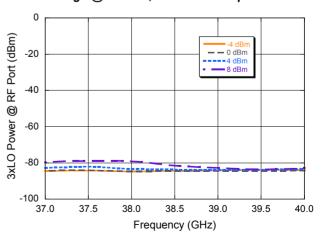

Rev. V1

Typical Performance Curves: LO = 4 dBm, P_{DC} = 0.84 W


1xLO Leakage @ RF Port

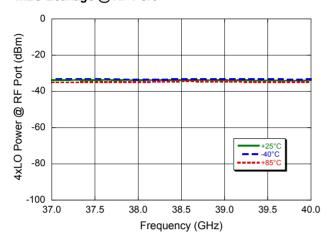

1xLO Leakage @ RF Port, LO Power swept

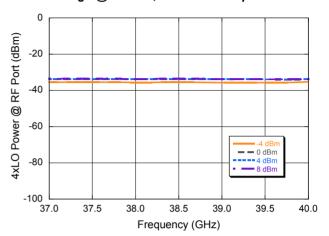

2xLO Leakage @ RF Port


2xLO Leakage @ RF Port, LO Power swept

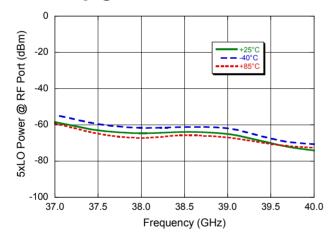
3xLO Leakage @ RF Port

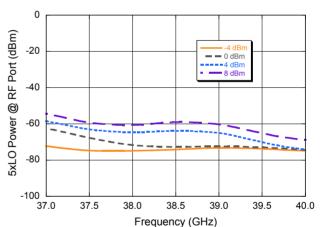
3xLO Leakage @ RF Port, LO Power swept




Rev. V1

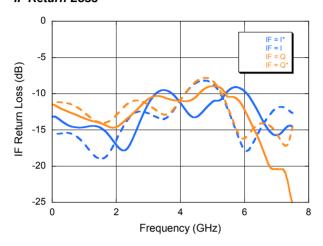
Typical Performance Curves: LO = 4 dBm, P_{DC} = 0.84 W

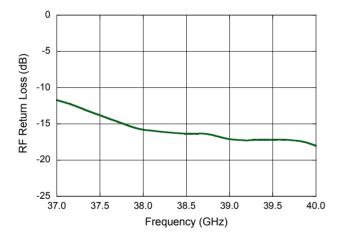

4xLO Leakage @ RF Port


4xLO Leakage @ RF Port, LO Power swept

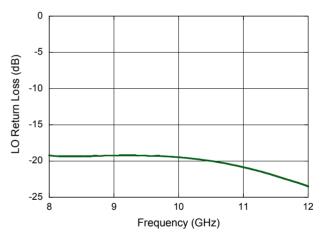
5xLO Leakage @ RF Port

5xLO Leakage @ RF Port, LO Power swept



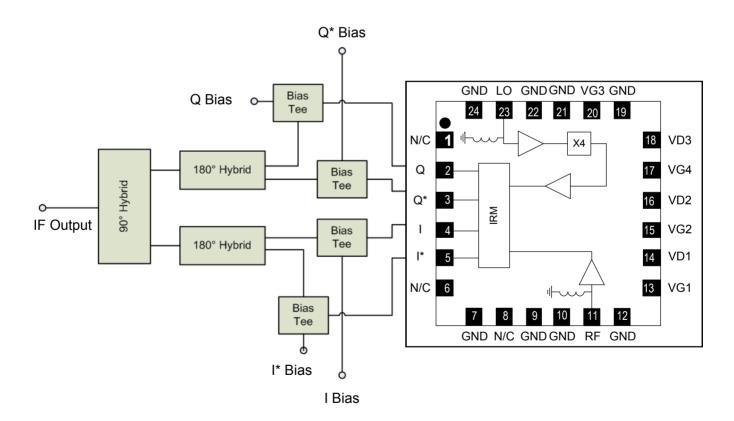

Rev. V1

Typical Performance Curves:


IF Return Loss

RF Return Loss

LO Return Loss

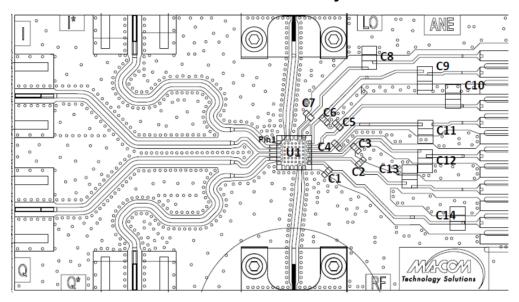

Rev. V1

App Note [1] Biasing

MADC-011010 is operated by biasing V_D1 , V_D2 and V_D3 at +3.0 V. The corresponding drain currents are set to 30 mA, 100 mA and 150 mA respectively. V_G4 requires a fixed voltage bias of nominally -2.5 V and all IF to be biased at +0.3 V. It is recommended to use active bias on V_G1 , V_G2 , V_G3 to keep the currents in V_D1 , V_D2 , and V_D3 constant, in order to maintain the best performance over temperature. Depending on the supply voltages available and the power dissipation constraints, the bias circuits may include a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply to sense the current. Make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] IF Outputs

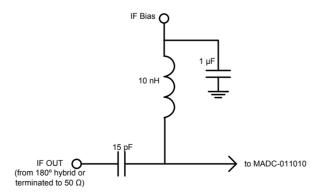
For highest gain, best image rejection and lowest noise figure all 4 IF ports should be used. I/I* and Q/Q* will be combined through two 180° hybrid couplers generating inphase and quadrature phase components. Inphase and quadrature signals then need to be combined through 90° hybrid combiner to create IF output. See App Note [4] for IF bias.



Rev. V1

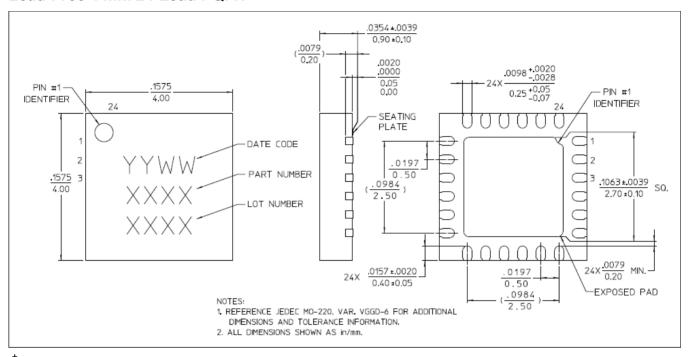
App Note [3] Board Layout

As shown in the recommended board layout, it is recommended to provide 100 pF decoupling capacitors as close to the bias pins as possible. Additional 10 nF and 1 μ F on each of the bias lines are recommended placed a distance further away.


Recommended Board Layout

App Note [4] IF Bias

To obtain optimum OIP3 performance, it is required to apply DC bias of + 0.3 V on each of the IF inputs (I, Q, I*, Q*). This can be implemented by adding simple bias tees to each of the four IF ports (see drawing from App Note [2] for the bias tees location). The diagram below shows a typical bias tee design used.


Typical Configuration

Rev. V1

Lead-Free 4 mm 24-Lead PQFN †

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg over copper.

MADC-011010

Down Converter 37 - 40 GHz

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.