Wideband Double Balanced Mixer-Amplifier

MDA4-752H+

Level 0 (LO Power 0dBm) 2200-7500 MHz

The Big Deal

- High L-I Isolation, 61 dB
- Low LO Power, 0 dBm
- Small Size, 4 x 4 x 1mm

CASE STYLE: DG1847

Product Overview

MDA4-752H+ is a multi-chip module incorporating a mixer (InGap HBT), LO amplifer (InGap HBT) and IF amplifier (E-PHEMT) dice in as single package. It has flat conversion gain over a broad frequency range and with high IP3. In addition, the MDA4-752H+ has good input and output return loss over a broad frequency range without the need for external matching components. It is packaged in a tiny 4x4 mm MCLP package with tin-silver over nickel plating passing tin whisker testing.

Key Features

Feature	Advantages
Wide Bandwidth 2.2 to 7.5 GHz	Useful in wideband systems or in several narrowband systems, reducing inventory.
Wide IF Bandwidth 0.03 to 1600 MHz	Usable in first (high IF-860 MHz) and second (low IF-70 MHz) down converter applications.
Conversion Gain, 4 to 9 dB	Incorporate low noise IF amplifier to enable positive conversion gain, minimizing the need for external amplifier circuits.
Low LO Power operation	Through the integration of a LO amplifier, the MDA4-752H+ can operate down to -3 dBm making this module very versitile as a receiver building block.
High LO-IF and RF-IF isolation 50 – 65 dB over 4 to 7.5 GHz	When used in suggested application circuit, provides outstanding isolation, minimizing the need for further filtering.
4 mm x 4 mm, 24 lead MCLP Package	Integrates Mixer, LO Amplifier and IF Amplifier into one package reducing PCB size. MCLP package has low inductance, repeatable transitions, and excellent thermal contact to PCB

Wideband Double Balanced Mixer-Amplifier

MDA4-752H+

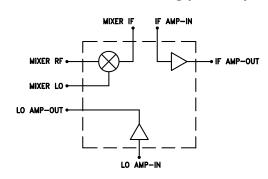
Level 0 (LO Power 0dBm) 2200-7500 MHz

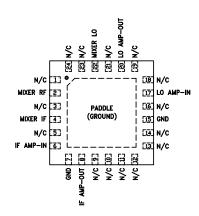
Product Features

- Wide bandwidth 2200 to 7500 MHz
- High L-I Isolation, 61 dB typ. at 4 GHz
- Operates with low LO power, 0 dBm
- Small Size 4 mm x 4mm x 1mm
- Aqueous washable

Typical Applications

- Satellite down converters
- Defense radar & communication
- VSAT
- Aeronautical


+RoHS Compliant ntifies RoHS Compliance. S


The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

MDA4-752H+ is a multi-chip module incorporating a mixer (InGap HBT), LO amplifer (InGap HBT) and IF amplifier (E-PHEMT) dice in as single package. It has flat conversion gain over a broad frequency range and with high IP3. In addition, the MDA4-752H+ has good input and output return loss over a broad frequency range without the need for external matching components. It is packaged in a tiny 4x4 mm MCLP package with tin-silver over nickel plating passing tin whisker testing.

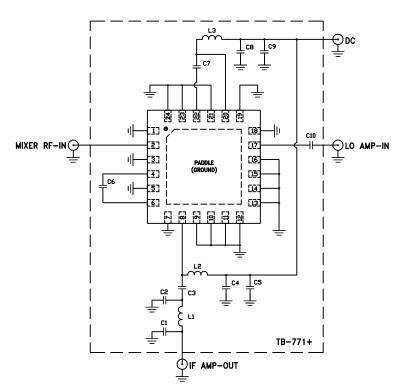
simplified schematic and bonding pad despcription

Function	Pad Number	Description	
Mixer-RF	2	RF input to mixer	
Mixer-LO	22	LO input to mixer	
Mixer-IF	4	IF output from mixer	
LO AMP-IN	17	LO Amplifier input	
LO AMP-OUT	20	LO Amplifier output & DC-IN	
IF AMP-IN	6	IF Amplifier input	
IF AMP-OUT	8	IF Amplifier output & DC-IN	
GND	7, Paddle	Connect to Ground	
NC	1, 3,5,9-16,18,19,21,23,24	No connection, not used, ground externally	

Electrical Specifications^{1,2} at 25°C, unless noted

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
RF Frequency Range		2.2		7.5	GHz
LO Frequency Range		2.2		7.5	GHz
IF Frequency Range		0.03		1.6	GHz
LO Power			0		dBm
Conversion Gain (at IF=30 MHz)	2.2	_	7.6	_	dB
,	3.0	_	9.7	_	
	4.0	8.1	9.1	10.4	
	5.0	_	7.6	_	
	6.0	_	7.3	_	
	7.5	_	4.2	_	
LO-RF Isolation	2.2	_	23	_	dB
	3.0	_	20	_	
	4.0	24	31	_	
	5.0	_	25	_	
	6.0	_	21	_	
	7.5	_	23	_	
LO-IF Isolation	2.2	_	19	_	dB
LO-II ISOIAIIOII	3.0	_	35		1
	4.0	53	61		
	5.0	_	64	_	
	6.0	_	59	_	
	7.5	_	60	_	
RF-IF Isolation	2.2		7		dB
THE RESIDENCE	3.0		25		u.b
	4.0		51		
	5.0		65		
	6.0		57		
	7.5		54		
Input at 1dB Compression	2-2 - 7.5		9		dBm
Input IP3	2.2		16		dBm
input ii o	3.0		15		dbiii
	4.0		15		
	5.0		16		
	6.0		16		
	7.5		19		
Noise Figure	2.3		8.6		dB
	3.0		9.6		UD
	4.0		9.6		
Thermal Resistance	4.0				
(junction-to-ground lead)			39		°C/W
DC Voltage			5		V
DC Current			141	169	mA

⁽⁹⁾ Measured on Mini-Circuits Characterization test board TB-771+ as down converter. See Characterization Test Circuit Figure 1 (2) Thermal Resistance= (Temperature rise of the dive hot spot above ground lead ÷ Total power dissipation)


Absolute Maximum Ratings³

Parameter		Ratings
Operating Temperature		-40°C to 85°C
Storage Temp	erature	-65°C to 150°C
	RF-IN	21 dBm
Mixer	LO-IN	21 dBm
	IF Current	30 mA
IF Amplifier - I	IN	+23 dBm (5 minutes max.) +17 dBm (continuous)
LO Amplifier - IN		+24 dBm
Power Dissipation		
LO Amplifier		0.725W
IF Amplifier		0.47W
DC voltable		5.5V

^{3.} Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

Characterization and Application Test Circuit

Component	Size	Value	Units
DUT		MDA4-752H+	_
L1	0402	4.7	nΗ
L2	0603	390	nΗ
L3	0402	36	nΗ
C1,C2	0402	3	pF
C3, C6	0402	.01	μF
C4,C7,C8,C10	0402	100	pF
C5,C9	0402	0.1	μF

Figure 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-771+). Conversion Loss, Isolations; L-R, L-I & R-I are measured using R&S ZVA 24 microwave network analyzer. Input IP3 is measured Agilent MXA N9020A spectrum Analyzer and PSG E8257D Signal Generators.

NF is measured using Agilent's N8975A NF Analyzer

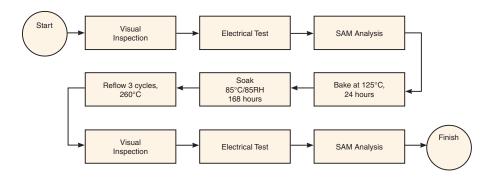
Conditions (Down Converter):

- 1. Conversion Loss, Isolations (L-R, L-I & R-I): RF= -10 dBm, LO=0 dBm, IF=30 MHz
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -10 dBm/tone at output.
- 3. Noise Figure: LO=0 dBm

Product Marking

Additional Detailed Technical Information additional information is available on our dash board. To access this information click here		
	Data Table	
Performance Data	Swept Graphs	
	S-Parameter (S1P Files) Data Set (.zip file)	
Case Style	DG1847 Plastic package, exposed paddle, lead finish: tin-silver over nickel	
Tape & Reel	F68	
Standard quantities available on reel	7" reels with 10,20, 50, 100, 200, 500 or 1K devices	
Suggested Layout for PCB Design	PL-433	
Evaluation Board	TB-771+	
Environmental Ratings	ENV08T1	

ESD Rating


Human Body Model (HBM): Class 1A (250 to 500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (Pass 25V) in accordance with ANSI/ESD STM5.2-1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

