NI USB-5680 RF Power Meter Specifications

This document lists specifications for the NI USB-5680 RF power meter. Minimum or maximum specifications are warranted under the following conditions:

- 1 hour warm-up time at ambient temperature
- Calibration cycle maintained
- Temperature 0 to 55 °C unless otherwise noted

Typical values are used to define a non-warranty specification that at least 68 percent of units exhibit at ambient temperatures of 15 to 35 °C. Specifications that do not list tolerance values are typical values unless otherwise specified. Tolerance values represent the maximum variation.

Specifications subject to change without notice. For the most recent NI 5680 specifications, visit ni.com/manuals.

General

Frequency range	50 MHz to 6 GHz
Dynamic range	40 to +23 dBm
Input return loss	
50 MHz to <2 GHz	<-26 dB
2 to 6 GHz	<-20 dB

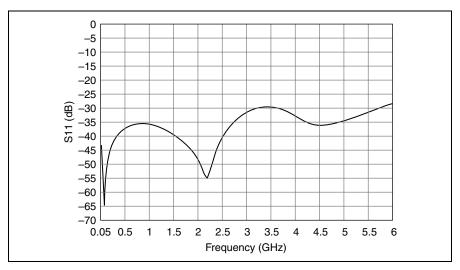


Figure 1. Power Meter Return Loss, Typical

Measurement range

Measurement range 1-40 to <-5 dBm

Measurement range 2-5 to +23 dBm

Table 1. Averaging, Low-Aperture Time Mode

Input Power (dBm)	Input Power (mW)	Number of Reads to Average for <±0.10 dB Noise	Number of Reads to Average for <±0.01 dB Noise
>10	>10.0	1	1
5	3.2	1	2
0	1.0	1	16
-5	0.32	1	78
-10	0.10	1	1
-15	0.032	1	1
-20	0.010	1	7
-25	0.0032	1	61
-30	0.0010	7	_
-35	0.00032	62	_
-40	0.00010	_	_

Table 2. Averaging, High-Aperture Time Mode

Input Power (dBm)	Input Power (mW)	Number of Reads to Average for <±0.10 dB Noise	Number of Reads to Average for <±0.01 dB Noise
>0	>1.00	1	1
-5	0.32	1	5
-10	0.10	1	1
-15	0.032	1	1
-20	0.010	1	1
-25	0.0032	1	4
-30	0.0010	1	38
-35	0.00032	4	_
-40	0.00010	39	_

Signal-channel bandwidth......100 Hz

Uncertainty

Linearity

Power level <18 dBm±0.13 dB Power level ≥18 dBm±0.18 dB

Calibration factor¹.....±0.06 dB

Noise²

Input Power Measurement Range	Low-Aperture Time Mode	High-Aperture Time Mode
-40 to <-5 dBm	<2.5 nW	<1.3 nW
-5 to +23 dBm	<0.6 µW	<1.7 μW

¹ Expanded uncertainty with coverage factor K=2 for absolute power measurements on continuous wave (CW) signal at 0 dBm calibration level over a 50 MHz to 6 GHz frequency range.

 $^{^2}$ Expanded uncertainty with coverage factor K=2 after zero operation for a five-minute measurement incorporating 128 averaged values. Includes effect of noise and zero offset.

Zero set¹ -40 to < -5 dBm < 10 nW -5 to +23 dBm < 1.7 μWZero drift¹ -40 to < -5 dBm < 3.0 nW -5 to +23 dBm < 0.5 μWTemperature compensation^{2,3} $0 \text{ to } 50 \text{ °C} \pm 0.06 \text{ dB}$ 20 to 30 °C 0 dBEffect of digital modulation $\text{Power level } < 18 \text{ dBm} \pm 0.02 \text{ dB}$ $\text{Power level } \ge 18 \text{ dBm} \pm 0.10 \text{ dB}$

System

Measurement	True root mean square/ Average power
Measurement resolution	0.01 dB
Offset range	±100 dB
Averaging range ⁴	1 to 256
Measurement speed	
Low-aperture time mode	15 measurements per second
High-aperture time mode	1 measurement per second
Interface	USB 2.0 and 1.1 compliant

Maximum Damage Levels

Maximum DC voltage at RF port......25 V

Absolute power......33 dBm

¹ After zero operation. 128 values averaged over one hour with temperature within ±1 °C.

 $^{^2\,}$ Measurement error with reference to a CW signal of equal power and frequency at 25 °C.

³ Negligible error at 20 to 30 °C.

⁴ Averaging range limit set by software. You can override this value; however, a value greater than 256 results in a higher measurement time.

DC Power Requirements (5V) through Host USB

Typical current	100 mA
Maximum current	150 m A

Calibration

Interval 1 year

Physical Dimensions

Environment¹

Operating Environment

Ambient temperature range................................... 0 to 55 $^{\circ}$ C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)

Relative humidity range² (noncondensing)

¹ Tests were performed per MIL-PRF-28800F (Class 2).

² Tested in accordance with IEC 60068-2-56.

Storage Environment

Ambient temperature range51 to +71 °C

(Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)

Relative humidity range......5 to 95 %, noncondensing

(Tested in accordance with

IEC 60068-2-56.)

Shock and Vibration

Nonoperational shock30 g peak, half-sine, 11 ms pulse

(Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with

MIL-PRF-28800F.)

Random vibration

nonoperating10–500 Hz, Power spectral

density 0.03 g²/Hz

(Tested in accordance with IEC 60068-2-64. Nonoperating

test profile exceeds the requirements of

MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label, or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Minimum Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For EMC compliance, operate this device according to product documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but also to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the <i>Terms of Use</i> section on ni.com/legal for more information about National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your CD, or ni.com/patents.
© 2007 National Instruments Corporation. All rights reserved.