


#### Mitigating Tomorrow's Interference Today<sup>SM</sup>

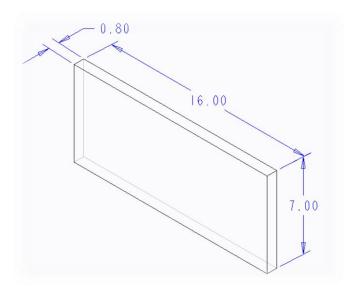


#### PTA1.5-16 Miniature GNSS Receive Passive Horizontal-Mount PCBA Antenna



#### **SPECIFICATION**

Part Number: PTA1.5-16


Specification #: PTA1.5-16\_050214\_v01

Product Name: Miniature GNSS Receive Passive Horizontal-Mount PCBA Antenna

Features: 1560 to 1610 MHz, >60% Radiated Efficiency, n

16.00 x 7.0 x 0.8 mm ( L x W x Thickness)

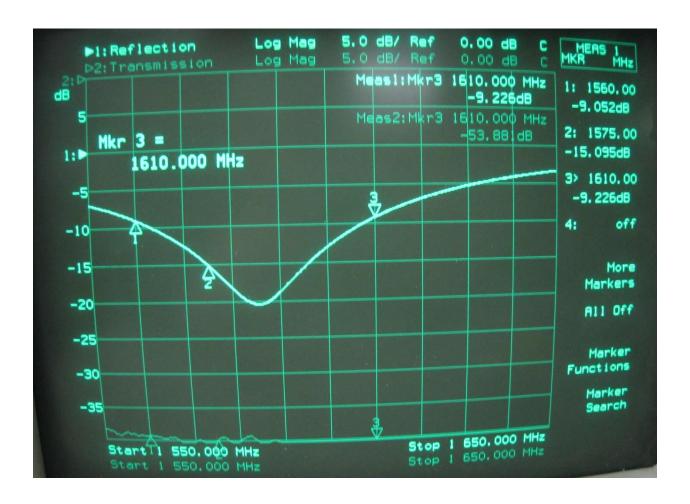
**RoHS compliant** 







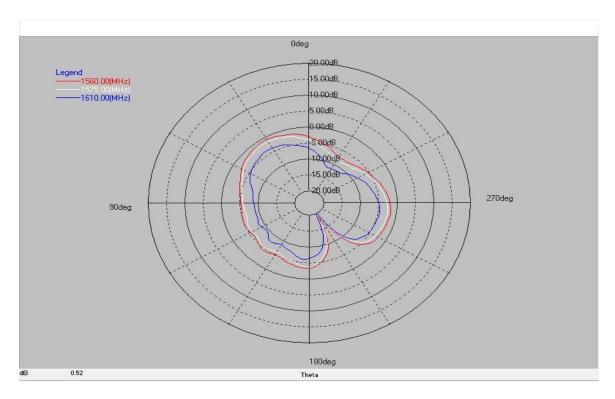
## **Product Description**


Parsec's PTA1.5-16 is a miniature high radiated efficiency GNSS/GPS L1 passive antenna with  $16.00 \times 7.0 \times 0.8 \text{ mm}$  ( L x W x thickness) dimensions. The PTA1.5-16 integrates easily with industry leading GNSS/GPS 3D-SIPs and system on chip (SoC) receivers with only a single direct connection typically required and is compatible with any GNSS receiver operating from 1560 to 1610 MHz. Ideal for embedded LBS receivers requiring good user experience that operate within 5 to 7 mm of the human body, indoors in the presence of multipath, and in applications with obstructed view of orbiting satellites. Patents pending.

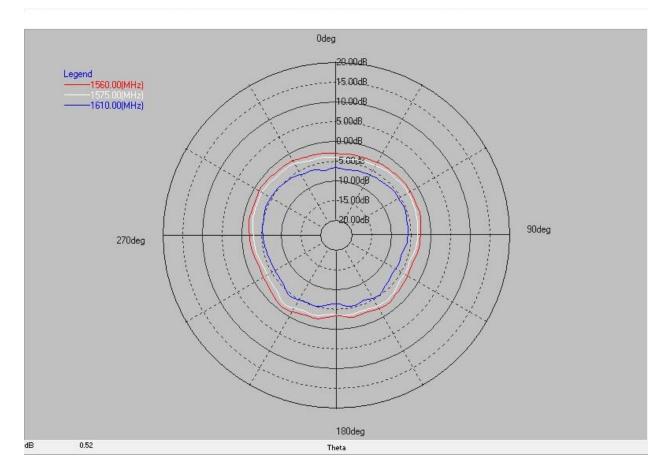
The PTA1.5-16 miniature printed circuit board (PCB) laminate based passive antenna is intended for embedded Global Navigation Satellite System (GNSS) receivers operating in the 1560 to 1610 MHz frequency range. It is mounted horizontally with respect to Earth within miniature GNSS receivers via surface mount technology (SMT) reflow using low cost industry standard methods. This antenna is linearly polarized (LP) and is optimized for use in miniature GNSS receivers requiring high radiated efficiency and wide beamwidth over a 50-MHz bandwidth.

## **Specification**

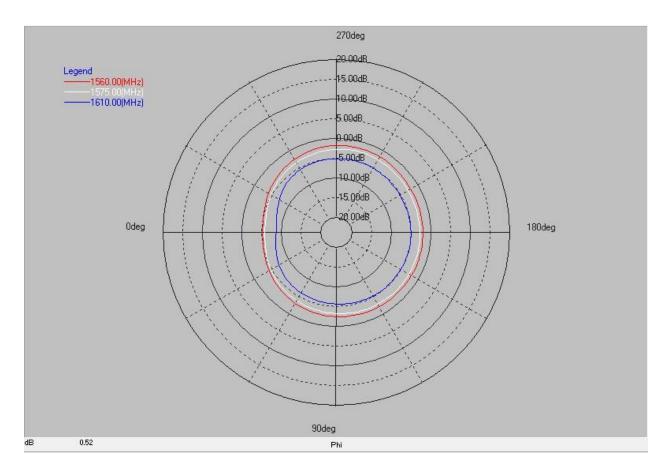
| Parameter              | Specification                | Notes                   |
|------------------------|------------------------------|-------------------------|
| Receive Frequency      | 1560MHz - 1575MHz - 1610 MHz |                         |
| Bandwidth              | 50 MHz                       | At 10-dB minimum        |
|                        |                              | return loss (RL)        |
| VSWR                   | 1.5:1                        | Typical at 1575MHz      |
| Gain at Zenith         | 1.9 dBi                      | @ 1560 MHz (corrected   |
|                        |                              | for cable loss)         |
| Gain at 10° Elevation  | 0.7 dBi                      | @ 1560 MHz (corrected   |
|                        |                              | for cable loss)         |
| Average Gain           | -0.54 dBi                    | @ 1560 MHz (corrected   |
|                        |                              | for cable loss)         |
| Radiated Efficiency, η | ≥60%                         | Maximum η degradation   |
|                        |                              | of 10% within 5 to 7 mm |
|                        |                              | of human body           |
| Polarization           | Linearly Polarized (LP)      |                         |
| Weight                 | 0.5g                         | Maximum                 |
| Operating Temperature  | -40 to +120 C                |                         |
| Return Loss            | -8dB -15dB -8dB              | Typical                 |


## Input Return Loss (IRL), S11 Electrical Property




Tested using a standard coax with sma cable handheld one foot away from cable

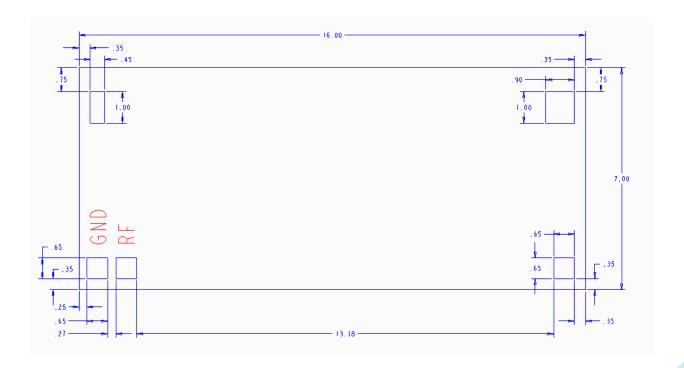
## **Radiation Pattern**


Polar plots shown in this section employ raw antenna test data with no correction for cable and connector loss and near field interference.



XZ Plane Radiation,  $\phi = 0^{\circ}$ 




YZ Plane Radiation,  $\phi = 90^{\circ}$ 



YZ Plane Radiation,  $\theta = 90^{\circ}$ 

# **Mechanical Drawings**





PTA1.5-16 antenna thickness is 0.8 mm nominal and 0.88 mm maximum to accommodate one (1) ounce copper (Cu) plating thickness on top and bottom side. Parsec Technologies Inc. assumes the customer will employ a motherboard or mating printed circuit board (PCB) constructed of two-layer minimum NEMA compliant FR4 VO rated laminate material with 1.5 mm nominal thickness and a permittivity of 4.8 maximum.

#### **Pad Out**

| PAD<br>DESCRIPTION | FUNCTION                                               | NOTES                                                                                                                                               |
|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| RF OUT             | 50-Ohm 1560 to 1610 MHz<br>radio frequency (RF) output | No matching required for 50-Ohm applications. Connect Motherboard using the RF OUT plated throughhole as shown in Mechanical Drawing.               |
| GND                | GROUND                                                 | There are six (6) Cu plated through-<br>hole holes in the PTA1.5-16 antenna<br>for connection to the Motherboard<br>as shown in Mechanical Drawing. |

## **Surface Mount Technology (SMT) Reflow**

Step One—ensure Motherboard is designed to accept both PTA1.5-16 antenna electrical connections (RF OUT and GND via seven total Cu plated through-holes) and mechanical connections (two mechanical connection points located on the BOTTOM SIDE of the PTA1.5-16 antenna as shown in the Mechanical Drawing;

Step Two: place solder paste IAW instructions on Parsec antenna module pads and Motherboard as applicable (two each Mechanical Support points and seven each Cu plated through-holes);

Step Three: position the Parsec antenna module as shown against the GNSS receiver Motherboard/PCBA prior to SMT reflow;

Step Four: perform SMT reflow IAW provided temperature profile.

## **Contact Information, Support**

For general contact, technical support, to report documentation errors and to order manuals, contact:

Parsec Technical Support Center (PTSC), <a href="mailto:techsupport@parsec-t.com">techsupport@parsec-t.com</a>