5-4000 MHz Wideband Low Noise Amplifier

Device Features

- NF = 0.95 dB @ 900MHz at RF connectors of Demo board
- Gain = 20.5 dB @ 900 MHz
- OIP3 = 30.0 dBm @ 1900MHz
- Output P1 dB = 17.5 dBm @ 900MHz
- 5V/27mA, MTTF > 100 Years, MSL 1, Class 0
- Lead-free/RoHS-compliant SOT-89 SMT package

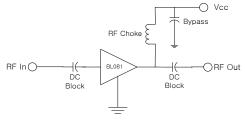
Product Description

BeRex's BL081 is a high performance LNA based on GaAs material with E-pHEMT process, packaged in a RoHS-compliant with SOT-89 surface mount package. It is designed for use where low noise and high linearity are required and features low noise and high OIP3 with *low current* at wideband frequency. It requires a few external matching components. All devices are 100% RF/DC tested and classified as HBM ESDS *Class 0*.

Applications

- Base station Infrastructure/RFID
- Commercial/Industrial/Military wireless system

Typical Performance¹


Parameter		Unit				
	900	1900	2140	2450	3500	MHz
Gain	20.5	17.0	16.0	15.5	13.4	dB
S11	-20.0	-20.0	-20.0	-21.0	-18.3	dB
S22	-22.0	-17.0	-17.0	-17.0	-12.1	dB
OIP3 ²	28.5	30.0	30.0	30.0	31.1	dBm
P1dB	17.5	17.5	17.5	17.5	18.5	dBm
Noise Figure	0.95	1.13	1.15	1.25	1.4	dB

 $^{^{1}}$ Device performance $_$ measured on a BeRex evaluation board at 25°C, 50 Ω system.

 $^{^{\}rm 2}\,$ OIP3 $_$ measured with two tones at an output of 5 dBm per tone separated by 1 MHz.

	Min.	Typical	Max.	Unit
Bandwidth	5		4000	MHz
I _C @ (Vc = 5V)	15	27	35	mA
V _C		5.0		V
R _{TH}		63		°C/W

Applications Circuit

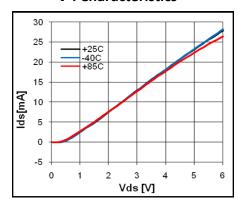
^{*}external matching circuit: refer to the page 4 to 12.

Absolute Maximum Ratings

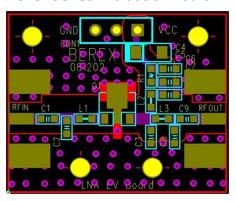
Parameter	Rating	Unit
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-55 to +155	°C
Junction Temperature	+220	°C
Operating Voltage	+6.0	V
Supply Current	160	mA
Input RF Power	30	dBm

Operation of this device above any of these parameters may result in permanent damage.

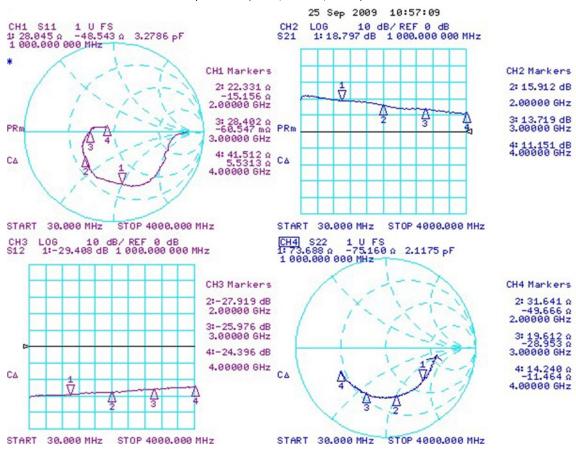
BeRex


•website: www.berex.com

•email: sales@berex.com


5-4000 MHz Wideband Low Noise Amplifier

V-I Characteristics


BeRex SOT89 Evaluation Board

*Dielectric constant _ 4.2 *RF pattern width 52mil *31mil thick FR4 PCB

Typical Device Data

S-parameters (Vd=5V, Id=25mA, T=25°C)

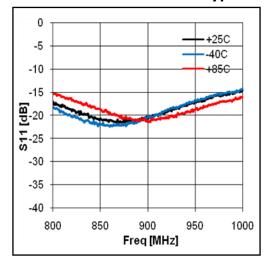
BeRex

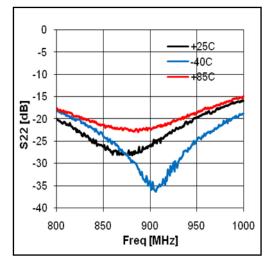
•website: www.berex.com

•email: sales@berex.com

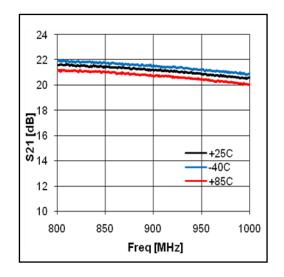
5-4000 MHz Wideband Low Noise Amplifier

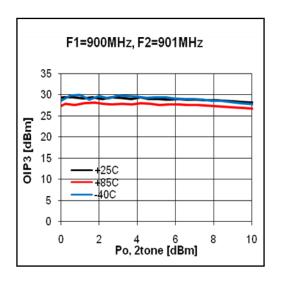
S-Parameter

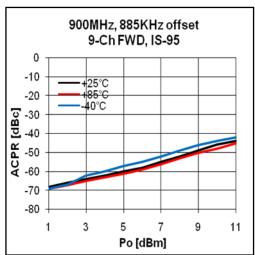

(Vdevice = 5.0V, Icc = 25mA, T = 25 °C, calibrated to device leads)

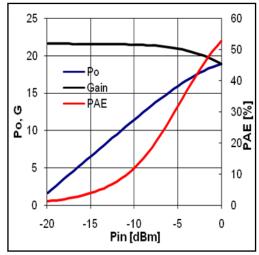

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]
100	0.637	-10.630	12.304	172.181	0.032	12.944	0.569	-8.574
500	0.678	-53.138	10.733	148.743	0.033	10.572	0.558	-21.318
1000	0.589	-82.755	8.815	126.435	0.035	17.891	0.554	-41.116
1500	0.513	-117.379	7.781	105.710	0.039	22.555	0.553	-60.200
2000	0.429	-139.689	6.261	82.420	0.041	23.205	0.555	-78.933
2500	0.371	-160.253	4.886	74.655	0.046	29.503	0.563	-96.918
3000	0.280	179.851	4.870	63.131	0.051	27.793	0.558	-114.110
3500	0.205	164.524	4.016	47.709	0.056	27.902	0.554	-133.482
4000	0.107	144.464	3.553	41.113	0.061	27.767	0.567	-153.176

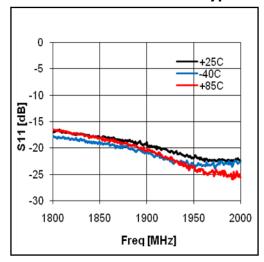
Application Circuit: 900 MHz

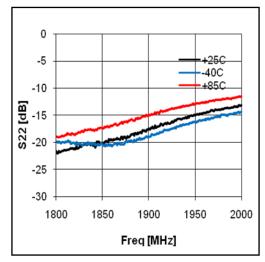

Schematic Diagram	вом		Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
│	C 3	100pF	±5%
\\ \begin{align*} \be	C4	100pF	±5%
	C 5	100pF	±5%
Input O BL081 O Output	C6	0.5pF	± 5%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L1	100nH	±5%
<u> </u>	L2	8.2nH	±5%
	L3	10nH	±5%



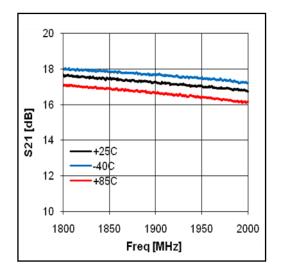


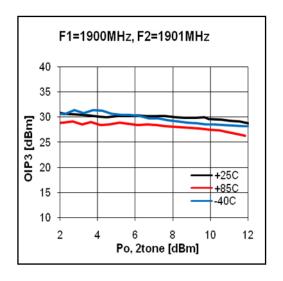

5-4000 MHz Wideband Low Noise Amplifier

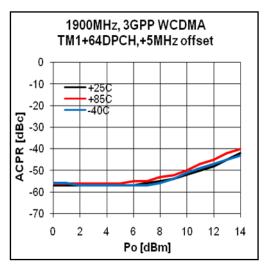

Noise Figure Temperature Performance

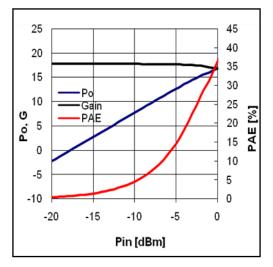

Freq	MHz	900	1900	2140	2450
Tomp	-40	0.78	0.96	0.98	0.92
Temp [°C]	25	0.98	1.25	1.18	1.16
	85	1.12	1.45	1.48	1.45

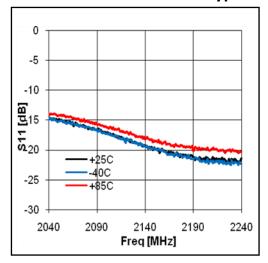
Application Circuit: 1900 MHz

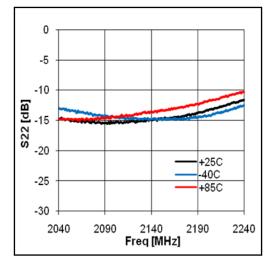

Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	C3	100pF	±5%
} L1 = =================================	C4	100pF	± 5%
	C 5	100pF	± 5%
Input O BL081 O Output	C6	0.75pF	± 5%
C6 C6	L1	18nH	±5%
± ±	L2	2.7nH	±5%
	L3	2.7nH	±5%



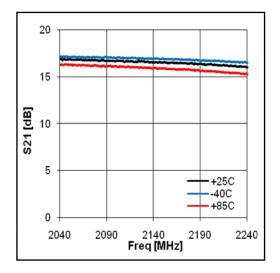


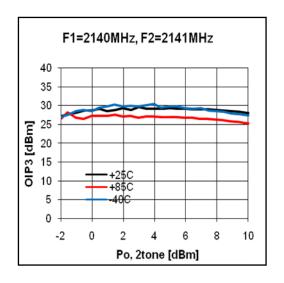

5-4000 MHz Wideband Low Noise Amplifier

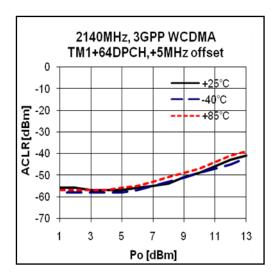

Noise Figure Temperature Performance

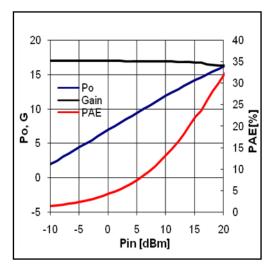

Freq	MHz	900	1900	2140	2450
Tomp	-40	0.78	0.96	0.98	0.92
Temp [°C]	25	0.98	1.25	1.18	1.16
	85	1.12	1.45	1.48	1.45

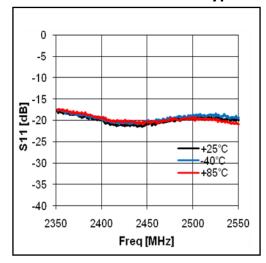
Application Circuit: 2140 MHz

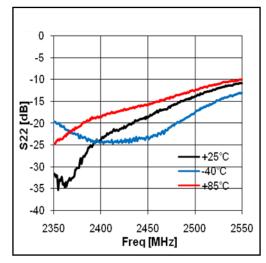

Schematic Diagram	вом		Tolerance
	C1	10uF	± 20%
C3 C2 C1	C2	1000pF	± 5%
	С3	100pF	±5%
3 _{L1}	C4	18pF	± 5%
}-' * * *	C 5	18pF	± 5%
Input O BL081 O Output	C6	0.75pF	± 5%
$C4 \downarrow L2$ $L3 \downarrow C5$	C 7	0.5pF	±5%
C6 C7	L1	33nH	±5%
÷ ÷ ÷	L2	1.5nH	±5%
	L3	4.7nH	±5%



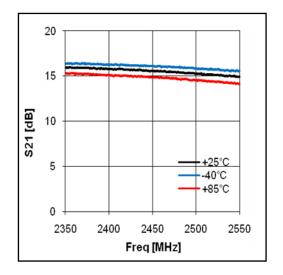


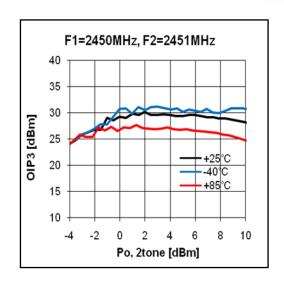

5-4000 MHz Wideband Low Noise Amplifier

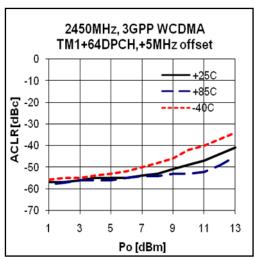

Noise Figure Temperature Performance

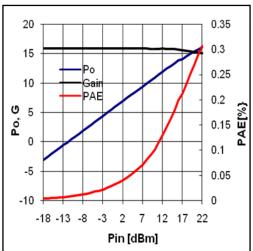

Freq	MHz	900	1900	2140	2450
Tomp	-40	0.78	0.96	0.98	0.92
Temp [°C]	25	0.98	1.25	1.18	1.16
	85	1.12	1.45	1.48	1.45

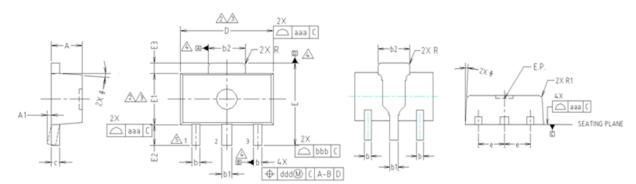
Application Circuit: 2450 MHz


Schematic Diagram	вом		Tolerance
	C1	10uF	± 20%
O Vdd		1000pF	± 5%
C3 C2 C1	C3	100pF	±5%
	C4	22pF	± 5%
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C 5	22pF	± 5%
Input Olimput Output	C6	0.5pF	± 5%
Input O \downarrow BL081 \downarrow C5 Output	C7	1pF	±5%
C6 C7	L1	47nH	±5%
† †	L2	1.8nH	±5%
	L3	3.9nH	±5%






5-4000 MHz Wideband Low Noise Amplifier


Noise Figure Temperature Performance

Freq	MHz	900	1900	2140	2450
Tomp	-40	0.78	0.96	0.98	0.92
Temp [°C]	25	0.98	1.25	1.18	1.16
	85	1.12	1.45	1.48	1.45

5-4000 MHz Wideband Low Noise Amplifier

Package Outline Dimension

NOTE:

1. DIMENSIONS IN MILLIMETERS.

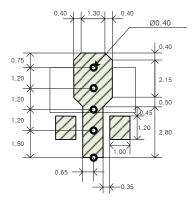
DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 8.5mm PER END.

DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.

INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 8.5mm PER SIDE.

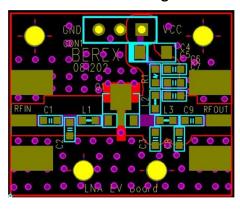
DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.


A DATUMS A, B AND D TO BE DETERMINED 8.18mm FROM THE LEAD TIP.

TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

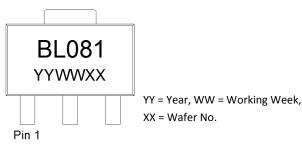
SYMBOL	MILLIMETERS					
	MINIMUM	NON	JINAL	MAXIMUM	NOTE	
A	1.40	1	.50	1.60		
A1	0.00	-		0.10		
Ь	0.38	0.42		0.48		
ь1	0.48	0.52		0.58		
b2	1.79	1.82		1.87		
C	0.40	0.42		0.46		
D	4.40	4.50		4.70	2,3	
E	3.70	4.00		4.30		
E E1	2.40	2.50		2.70	2,3	
E2	0.80	1	.00	1.20		
E3	0.40	0.50		0.60		
e	1.50 TYP.					
0	4° TYP.					
R	0.15 TYP.					
R1	-		_	0.20		
SYMBOL	TOLERANCES OF AND POSI	FORM	NOTE			
aaa	0.15]		
bbb	0.20					
ccc	0.10					
ddd	0.10			1		

Suggested PCB Land Pattern and PAD Layout

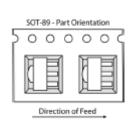

PCB Land Pattern

Note: All dimension _ millimeters

PCB lay out _ on BeRex website


PCB Mounting

5-4000 MHz Wideband Low Noise Amplifier



Package Marking

Tape & Reel

SOT89

Packaging information:

Tape Width (mm): 12
Reel Size (inches): 7

Device Cavity Pitch (mm): 8

Devices Per Reel: 1000

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 0

Value: Passes <200V

Test: Human Body Model (HBM)

Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020

NATO CAGE code:

2	N	9	6	F