Bandpass Filters — B Series

• Features:

- Economical Design Yields High Performance Results
- 100 MHz to 6000 MHz Frequency Range*
- 3 dB BW; 4-40%
- Design Available in 2-8 Sections
- 0.05 dB Chebychev Design Response
- Ruggedized Package Designs

Specifications:

Mode	Diameter (Inches/mm)	Frequency (MHz)	3 dB % BW	VSWR	Average Power (Watts)	Impedance (Ohms)	No. of Sections	Shock	Vibration	Temp.	Relative Humidity
B250	.25/6.35	1000-6000	4-40	1.5:1	2		2-8	20 G's, 1/2 Sine, 11 Ms	10 G's, 10 Hz- 2000 Hz	-55 to +85 °C	0-95%
B120*	* .50/12.7	100-2500	4-40	1.5:1	18	50					
B340	.75/19.05	100-1000	4-40	1.5:1	40	30					
B110	1.25/31.7	70-600*	4-40	1.5:1	200						

^{**} Model B120 fits most applications and is the most cost effective choice.

◆ Attenuation:

The following curves are used in determining the outof-band attenuation. The curves show minimum stopband in dB as multiples of the 3 dB bandwidth.

To determine which series of curves to use, first calculate the percentage 3 dB bandwidth from the following formula:

% BW =
$$\left(\frac{3 \text{ dB BW}}{\text{Center Frequency}}\right) \times 100$$

To determine the number of bandwidths (3 dB) from center frequency, use the following formula:

No. % BW = Reject Frequency-Center Frequency
3 dB BW

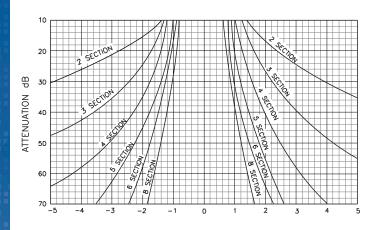
Example:

Center Frequency = 300 MHz 3 db Bandwidth = 50 MHz Number of Sections = 6

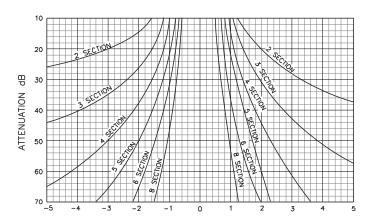
Determine attenuation at 200 MHz and 400 MHz:

1. Calculate % BW =
$$\frac{50x100}{300}$$
 = 17%

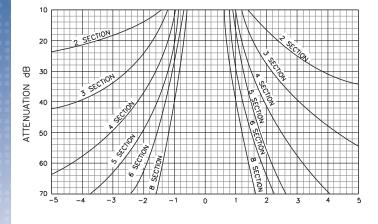
2. -3 dB BW =
$$\underline{200-300}$$
 = -2 BW's

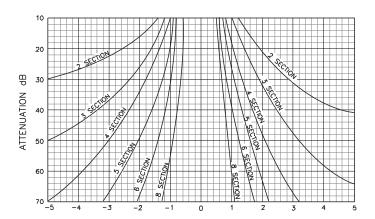

3. +3 dB BW =
$$\frac{400-300}{50}$$
 = +2 BW's

Referring to the curve for a 15%-30% bandwidth, a 6 section response -2 BW yields 64 dB, and +2 BW yields greater than 70 dB.



Bandpass Filters — B Series


♦ For Bandwidths 4 to 5%


♦ For Bandwidths 15 to 30%

♦ For Bandwidths 5 to 15%

◆ For Bandwidths 30 to 40%

◆ Mechanical/Connectors- See page 42/43.

Bandpass Filters — B Series

◆ Insertion Loss:

The maximum insertion loss at center frequency can be determined by using the following formula:

Insertion Loss at Center Frequency = $\left(\frac{\text{Loss Constant}}{\text{% 3 dB BW}}\right) + 0.2$

Example:

Filter Model = B120 Center Frequency = 500 MHz 3 dB Bandwidth = 80 MHz Number of Sections = 5

Determine the insertion loss at center frequency: From the table, the loss constant is shown to be 2.0. % 3 dB BW = (3 dB BW)(100) = 80×100 = 16% Center Frequency

By substituting in the formula we find the insertion loss = $\begin{pmatrix} (2)(5+1/2) \\ 16 \end{pmatrix}$ + 0.2 = 0.9 dB

♦ Loss Constant vs. Frequency vs. Model:

Center Frequency (MHz)							
Model		101	201	401	1001	2001	4001
	100	200	400	1000	2000	4000	6000
B250					3.5	3.0	2.5
B120		3.0	2.5	2.0	1.8	1.6	
B340	2.2	2.0	1.6	1.4	1.2		
B110	1.8	1.6	1.3	1.2			

◆ To Order:

 $\frac{5}{1} \frac{B}{2} \frac{120}{3} - \frac{500}{4} / \frac{1}{5} \frac{80}{6} - \frac{O}{7} / \frac{O}{8}$

Code	<u>Description</u>
1	Number of Sections
2	B- Bandpass
3	Model
	25025"- 6.35mm
	12050" - 12.7mm
	34075" - 19.05mm
	110-1.25" - 25.4mm
4	Center Frequency (MHz)
5	Supplemental Codes (See Page 13)
6	Bandwidth (MHz)
7	Input Connector
8	Output Connector