

HELP3DC™ (Band 5)

LTE/WCDMA/CDMA Linear PA Module **PRELIMINARY DATASHEET - Rev 1.3** 

### **FEATURES**


- CDMA/EVDO. WCDMA/HSPA and LTE compliant
- 3rd Generation HELP™ technology
- High Efficiency: (R99 waveform)
  - 40 % @ Pout = +28.5 dBm
  - 21.5 % @ Pout = +17 dBm
- Simpler Calibration with only 2 Bias modes
- Optimized for SMPS Supply
- Low Quiescent Current: 9 mA
- Low Leakage Current in Shutdown Mode: <5 μA
- Internal Voltage Regulator
- Integrated "daisy chainable" directional couplers with CPLIN and CPLOUT Ports
- Optimized for a 50  $\Omega$  System
- Low Profile Miniature Surface Mount Package
- Internal DC blocks on IN/OUT RF ports
- 1.8 V Control Logic
- RoHS Compliant Package, 260 °C MSL-3

#### **APPLICATIONS**

- Wireless Handsets and Data Devices for:
  - WCDMA/HSPA and LTE Cell-Band
  - CDMA/EVDO Band Class 0 & 10

### PRODUCT DESCRIPTION

The AWT6635 PA is designed to provide highly linear output for WCDMA ,CDMA and LTE handsets and data devices with high efficiency at both high and low power modes. This HELP3DC™ PA can be used with an external switch mode power supply (SMPS) to improve its efficiency and reduce current consumption further at medium and low output powers. A "daisy chainable" directional coupler is integrated in the module thus eliminating the need of external couplers. The device is manufactured on an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and



**Surface Mount Module** 

ruggedness. There are two selectable bias modes that optimize efficiency for different output power levels, and a shutdown mode with low leakage current, which increases handset talk and standby time. The self-contained 3 mm x 3 mm x 1 mm surface mount package incorporates matching networks optimized for output power, efficiency, and linearity in a 50  $\Omega$  system.

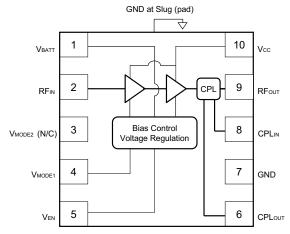



Figure 1: Block Diagram

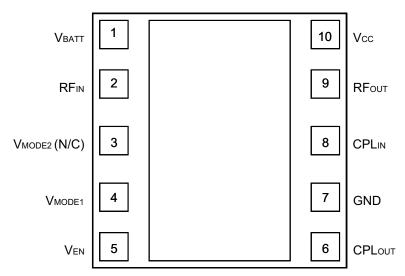



Figure 2: Pinout (X-ray Top View)

**Table 1: Pin Description** 

| PIN | NAME                     | DESCRIPTION            |
|-----|--------------------------|------------------------|
| 1   | $V_{BATT}$               | Battery Voltage        |
| 2   | RFℕ                      | RF Input               |
| 3   | V <sub>MODE2</sub> (N/C) | No Connection          |
| 4   | V <sub>MODE1</sub>       | Mode Control Voltage 1 |
| 5   | $V_{EN}$                 | PA Enable Voltage      |
| 6   | CPLout                   | Coupler Output         |
| 7   | GND                      | Ground                 |
| 8   | CPL⋈                     | Coupler Input          |
| 9   | RFout                    | RF Output              |
| 10  | Vcc                      | Supply Voltage         |

# **ELECTRICAL CHARACTERISTICS**

**Table 2: Absolute Minimum and Maximum Ratings** 

| PARAMETER                          | MIN | MAX  | UNIT |
|------------------------------------|-----|------|------|
| Supply Voltage (Vcc)               | 0   | +5   | V    |
| Battery Voltage (VBATT)            | 0   | +6   | V    |
| Control Voltages (VMODE1, VENABLE) | 0   | +3.5 | V    |
| RF Input Power (Pℕ)                | -   | +10  | dBm  |
| Storage Temperature (Tstg)         | -40 | +150 | °C   |

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

**Table 3: Operating Ranges** 

| PARAMETER                                                                                                  | MIN                                                                                                 | TYP                                    | MAX                                    | UNIT | COMMENTS                                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------|---------------------------------------------------------------------------------------------|--|--|--|
| Operating Frequency (f)                                                                                    | 814                                                                                                 | ı                                      | 849                                    | MHz  |                                                                                             |  |  |  |
| Supply Voltage (Vcc)                                                                                       | +0.5                                                                                                | +3.4                                   | +4.35                                  | ٧    | Pouт ≤+28.5 dBm                                                                             |  |  |  |
| Battery Voltage (VBATT)                                                                                    | +3.1                                                                                                | +3.4                                   | +4.35                                  | V    | Pouт ≤+28.5 dBm                                                                             |  |  |  |
| Enable Voltage (VENABLE)                                                                                   | +1.35<br>0                                                                                          | +1.8<br>0                              | +3.1<br>+0.5                           | V    | PA "on"<br>PA "shut down"                                                                   |  |  |  |
| Mode Control Voltage (VMODE1)                                                                              | +1.35<br>0                                                                                          | +1.8<br>0                              | +3.1<br>+0.5                           | V    | Low Bias Mode<br>High Bias Mode                                                             |  |  |  |
| RF Output Power (Pout) R99 WCDMA, HPM HSPA (MPR=0), HPM LTE, HPM R99 WCDMA, LPM HSPA (MPR=0), LPM LTE, LPM | 27.7 <sup>(1)</sup> 26.7 <sup>(1)</sup> 26.7 <sup>(1)</sup> 16.2 <sup>(1)</sup> 15.2 <sup>(1)</sup> | 28.5<br>27.5<br>27.5<br>17<br>16<br>16 | 28.5<br>27.5<br>27.5<br>17<br>16<br>16 | dBm  | 3GPP TS 34.121-1, Rel 8<br>Table C.11.1.3 for WCDMA<br>SUBTEST 1<br>TS 36.101 Rel 8 for LTE |  |  |  |
| CDMA Output Power<br>HPM<br>LPM                                                                            | 26.7 <sup>(1)</sup><br>15.2 <sup>(1)</sup>                                                          | 27.5<br>16.0                           | 27.5<br>16.0                           | dBm  | CDMA2000, RC1                                                                               |  |  |  |
| Case Temperature (Tc)                                                                                      | -30                                                                                                 | -                                      | +90                                    | °C   |                                                                                             |  |  |  |

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) For operation at Vcc = +3.1 V, Pout is derated by 0.8 dB.



Table 4: Electrical Specifications - WCDMA Operation (R99 waveform) (Tc = +25 °C, Vcc = +3.4 V, V<sub>BATT</sub> = +3.4 V, V<sub>ENABLE</sub> = +1.8 V, 50  $\Omega$  system)

| (10                                                           | - 3.7 0          | - LAADLE - | -1.8 V, 50 Ω system) |          |                                                                                                              |                               |
|---------------------------------------------------------------|------------------|------------|----------------------|----------|--------------------------------------------------------------------------------------------------------------|-------------------------------|
| PARAMETER                                                     | MIN TYP MAX UNIT |            | UNIT                 | COMMENTS |                                                                                                              |                               |
|                                                               |                  |            |                      | J        | Роит                                                                                                         | V <sub>MODE1</sub>            |
| Gain                                                          | 25.5<br>13       | 28.5<br>16 | 31<br>18             | dB       | +28.5 dBm<br>+17 dBm                                                                                         | 0 V<br>1.8 V                  |
| ACLR1 at 5 MHz offset (1)                                     | 1 1              | -41<br>-41 | -38<br>-38           | dBc      | +28.5 dBm<br>+17 dBm                                                                                         | 0 V<br>1.8 V                  |
| ACLR2 at 10 MHz offset <sup>(1)</sup>                         | 1 1              | -56<br>-56 | -48<br>-48           | dBc      | +28.5 dBm<br>+17 dBm                                                                                         | 0 V<br>1.8 V                  |
| Power-Added Efficiency (1)                                    | 1 1              | 40<br>21.5 | 1 1                  | %        | +28.5 dBm<br>+17 dBm                                                                                         | 0 V<br>1.8 V                  |
| Quiescent Current (lcq)<br>Low Bias Mode                      | 1                | 9          | 11                   | mA       | V <sub>MODE1</sub> = +1.8 V                                                                                  |                               |
| Mode Control Current                                          | -                | 0.06       | 0.15                 | mA       | through V <sub>MODE</sub> pin                                                                                | , V <sub>MODE1</sub> = +1.8 V |
| Enable Current                                                | -                | 0.4        | 0.6                  | mA       | through VENABLE pin                                                                                          |                               |
| BATT Current                                                  | -                | 3.0        | 5                    | mA       | through VBATT pin, VMODE1 = +1.8 V                                                                           |                               |
| Leakage Current                                               | -                | 4          | -                    | μA       | V <sub>BATT</sub> = +4.2 V, V <sub>CC</sub> = +4.2 V,<br>V <sub>ENABLE</sub> = 0 V, V <sub>MODE1</sub> = 0 V |                               |
| N · · · B · · B 1/2)                                          | -                | -133       | -131                 | dBm/Hz   | Ро∪т <u>&lt;</u> +28.5 dВr                                                                                   | m, V <sub>MODE1</sub> = 0V    |
| Noise in Receive Band <sup>(2)</sup>                          | -                | -137       | -135                 | dBm/Hz   | Pout ≤ 17 dBm, V <sub>MODE1</sub> = +1.8 V                                                                   |                               |
| Harmonics<br>2fo<br>3fo, 4fo                                  |                  | -40<br>-60 | -35<br>-45           | dBc      | Роит <u>&lt;</u> +28.5 dВr                                                                                   | m                             |
| Input Impedance                                               | -                | -          | 2:1                  | VSWR     |                                                                                                              |                               |
| Coupling Factor                                               | -                | 20         | -                    | dB       |                                                                                                              |                               |
| Directivity                                                   | -                | 20         | -                    | dB       |                                                                                                              |                               |
| Coupler In-Out<br>Daisy Chain<br>Insertion Loss               | 1                | <0.25      | 1                    | dB       | 698 MHz to 2620<br>Pin 8 to 6<br>Shutdown Mode                                                               | ) MHz                         |
| Spurious Output Level (all spurious outputs)                  | -                | -          | -70                  | dBc      | Pout ≤ +28.5 dBr<br>In-band load VSV<br>Out-of-band load<br>Applies over all of                              | WR < 5:1                      |
| Load mismatch stress with no permanent degradation or failure | 8:1              | -          | -                    | VSWR     | Applies over full                                                                                            | operating range               |
| Phase Delta (HPM-LPM)                                         | -                | 10         | -                    | Deg      |                                                                                                              |                               |

Notes:

<sup>(1)</sup> ACLR and Efficiency measured at 836.5 MHz.

<sup>(2) 869</sup> MHz to 894 MHz.

Table 5: Electrical Specifications - LTE Operation (RB = 12, START = 0, QPSK) (Tc = +25 °C, Vcc =  $V_{BATT}$  = +3.4 V,  $V_{ENABLE}$  = +1.8 V, 50  $\Omega$  system)

| PARAMETER                                                     | MIN        | TYP        | MAX      | UNIT | COMMENTS                                                                                 |                    |  |
|---------------------------------------------------------------|------------|------------|----------|------|------------------------------------------------------------------------------------------|--------------------|--|
| PARAMETER                                                     | IVIIN      | ITP        | IVIAX    | UNII | Роит                                                                                     | V <sub>MODE1</sub> |  |
| Gain                                                          | 25.5<br>13 | 28.5<br>16 | 31<br>18 | dB   | +27.5 dBm<br>+16 dBm                                                                     | 0 V<br>1.8 V       |  |
| ACLR E-UTRA<br>at ± 10 MHz offset                             | 1 1        | -39<br>-38 | 1 1      | dBc  | +27.5 dBm<br>+16 dBm                                                                     | 0 V<br>1.8 V       |  |
| ACLR1 UTRA (1)<br>at ± 7.5 MHz offset                         | 1 1        | -40<br>-39 | 1 1      | dBc  | +27.5 dBm<br>+16 dBm                                                                     | 0 V<br>1.8 V       |  |
| ACLR2 UTRA<br>at ± 12.5 MHz offset                            | 1 1        | -60<br>-60 | 1 1      | dBc  | +27.5 dBm<br>+16 dBm                                                                     | 0 V<br>1.8 V       |  |
| Power-Added Efficiency (1)                                    | 1 1        | 36<br>19   | 1 1      | %    | +27.5 dBm<br>+16 dBm                                                                     | 0 V<br>1.8 V       |  |
| Spurious Output Level (all spurious outputs)                  | -          | -          | <-70     | dBc  | Pout ≤ +27.5 dBm<br>In-band load VSWR ·<br>Out-of-band load VS'<br>Applies over all open | WR < 10:1          |  |
| Load mismatch stress with no permanent degradation or failure | 8:1        | -          | -        | VSWR | Applies over full oper                                                                   | rating range       |  |

Notes:

(1) ACLR and Efficiency measured at 836.5 MHz.

# Table 6: Electrical Specifications - CDMA2000 Operation (RC-1 waveform) (Tc = +25 °C, Vcc = +3.4 V, VBATT = +3.4 V, VENABLE = +1.8 V, 50 $\Omega$ system)

| , , , , , , , , , , , , , , , , , , , ,                                                                                       |            |            |          |      |                                                                                                                     |                   |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------|------|---------------------------------------------------------------------------------------------------------------------|-------------------|--|
| PARAMETER                                                                                                                     | MIN        | MIN TYP    |          | UNIT | COMMENTS                                                                                                            |                   |  |
| TAKAMETEK                                                                                                                     | Willy      | • • •      | MAX      | ONIT | Роит                                                                                                                | VMODE1            |  |
| Gain                                                                                                                          | 25.5<br>13 | 28.5<br>16 | 31<br>18 | dB   | Роит = +27.5 dBm<br>Роит = +16 dBm                                                                                  | 0 V<br>1.8 V      |  |
| Adjacent Channel Power<br>at ±885 kHz offset (1)<br>Primary Channel BW = 1.23 MHZ<br>Adjacent Channel BW = 30 kHz             | 1 1        | -51<br>-50 | 1 1      | dBc  | Роит = +27.5 dBm<br>Роит = +16 dBm                                                                                  | 0 V<br>1.8 V      |  |
| Adjacent Channel Power<br>at ±1.98 MHz offset <sup>(1)</sup><br>Primary Channel BW = 1.23 MHZ<br>Adjacent Channel BW = 30 kHz | 1 1        | -61<br>-59 | 1 1      | dBc  | Роит = +27.5 dBm<br>Роит = +16 dBm                                                                                  | 0 V<br>1.8 V      |  |
| Power-Added Efficiency (1)                                                                                                    | 1 1        | 36<br>19   | 1 1      | %    | Роит = +27.5 dBm<br>Роит = +16 dBm                                                                                  | 0 V<br>1.8 V      |  |
| Spurious Output Level (all spurious outputs)                                                                                  | -          | -          | -70      | dBc  | Pout ≤ +27.5 dBm<br>In-band Load VSWR < 5:1<br>Out-of-band Load VSWR < 10:1<br>Applies over all operating condition |                   |  |
| Load mismatch stress with no permanent degradation or failure                                                                 | 8:1        | _          | _        | VSWR | Applies over all oper                                                                                               | rating conditions |  |



# PERFORMANCE DATA PLOTS: (WCDMA Operation at 836.5 MHz and 50 $\Omega$ system)

Figure 3: WCDMA Gain (dB) over Temperature  $(V_{BATT} = V_{CC} = 3.4 V)$ 35 30C 3.4Vcc 25C 3.4Vcc 30 90C 3.4Vcc Gain (dB) 25 20 0 20 30 10 15 25 Pout (dBm)

Figure 4: WCDMA Gain (dB) over Temperature  $(V_{BATT} = V_{CC} = 3.4 V)$ 30 25C 3.2Vcc - 25C 3 4Vcc 25C 4.2Vcc 25C 3.0Vcc 25 Gain (dB) 20 15 0 20 5 10 15 25 30 Pout (dBm)

Figure 5: WCDMA PAE (%) over Temperature  $(V_{BATT} = V_{CC} = 3.4 V)$ 50 -303.4cc - 25C 3.4Vcc 40 90C 3.4Vcc Efficiency (%) 30 20 10 0 10 20 30 0 15 25 Pout (dBm)

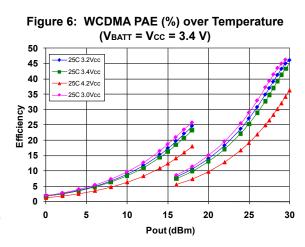
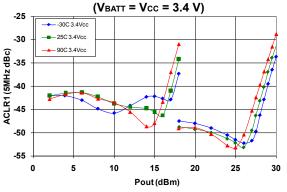
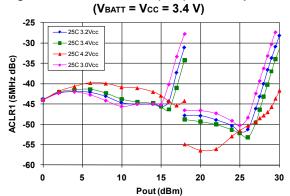





Figure 7: WCDMA ACLR1 (dBc) over Temperature Figure 8: WCDMA ACLR1 (dBc) over Temperature





### APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

### **Shutdown Mode**

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the VENABLE and VMODE1 voltages.

#### **Bias Modes**

The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate

logic level (see Operating Ranges table) to  $V_{\text{MODE1}}$ . The Bias Control table lists the recommended modes of operation for various applications.  $V_{\text{MODE2}}$  is not necessary for this PA.

Two operating modes are available to optimize current consumption. High Bias/High Power operating mode is for PouT levels ≥ 16 dBm. At around 17 dBm output power, the PA can be "Mode Switched" to Low power mode for lowest quiescent current consumption.

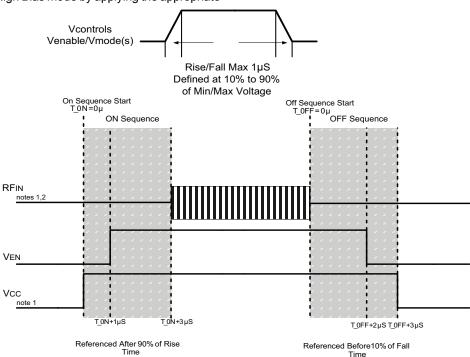



Figure 9: Recommended ON/OFF Timing Sequence

#### Notes:

- (1) Level might be changed after RF is ON.
- (2) RF OFF defined as P<sub>IN</sub> ≤ -30 dBm.
- (3) Switching simultaneously between VMODE and VEN is not recommended.

**Table 7: Bias Control** 

| APPLICATION                      | Pout<br>LEVELS | BIAS<br>MODE | VENABLE | V <sub>MODE1</sub> | Vcc          | VBATT   |
|----------------------------------|----------------|--------------|---------|--------------------|--------------|---------|
| High power<br>(High Bias Mode)   | > +16 dBm      | High         | +1.8 V  | 0 V                | 1.5 - 4.35 V | > 3.1 V |
| Med/low power<br>(Low Bias Mode) | ≤ +17 dBm      | Low          | +1.8 V  | +1.8 V             | 0.5 - 4.35 V | > 3.1 V |
| Shutdown                         | -              | Shutdown     | 0 V     | 0 V                | 0.5 - 4.35 V | > 3.1 V |

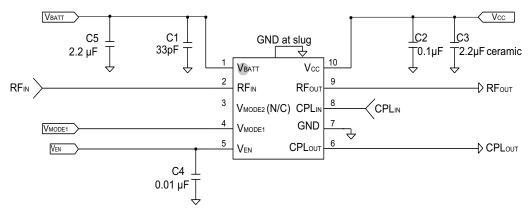



Figure 10: Evaluation Circuit Schematic

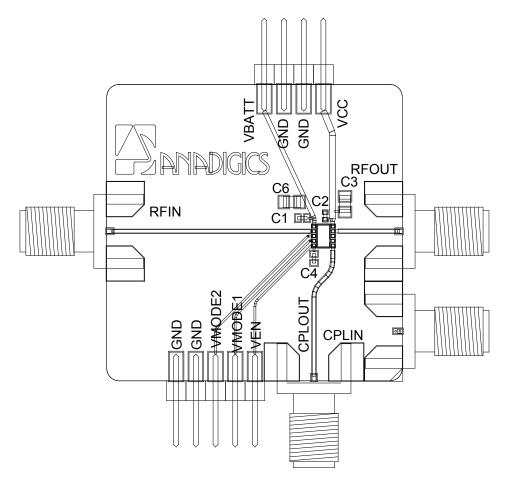



Figure 11: Evaluation Board Layout

#### HELP3DC™

The AWT6635 power amplifier module is based on ANADIGICS proprietary HELP3DC™ technology. The PA is designed to operate up to 17 dBm in the low power mode, thus eliminating the need for three gain state, while still maintaining low quiescent current and high efficiency in low and medium power levels. Average weighted efficiency can be increased by using an external switch mode power supply (SMPS) or DC/DC converter to reduce Vcc.

The directional "daisy chainable" coupler is integrated within the PA module, therefore there is no need for external couplers.

The AWT6635 has an integrated voltage regulator, which eliminates the need for an external constant voltage source. The PA is turn on/off is controlled by VEN pin. A single VMODE control logic (VMODE1) is needed to operate this device.

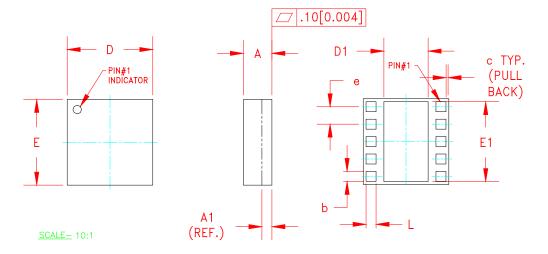

AWT6635 requires only two calibration sweeps for system calibration, thus saving calibration time.

Figure 11 shows one application example on mobile board. C1 and C2 are RF bypass caps and should be placed nearby pin 1 and pin 10. Bypass caps C4 and C5 may not be needed. Also a "T" matching topology is recommended at PA RFIN and RFOUT ports to provide matching between input TX Filter and Duplexer / Isolator.



Figure 12: Typical Application Circuit

# **PACKAGE OUTLINE**



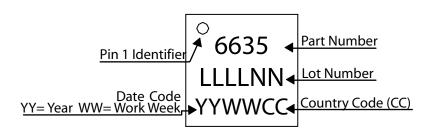
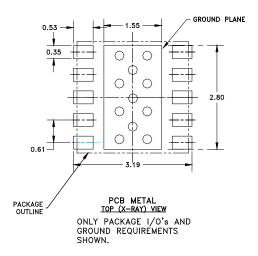
| S <sub>YMBOL</sub> | MILLIMETERS                                 |      |      |       | NOTE  |       |   |  |
|--------------------|---------------------------------------------|------|------|-------|-------|-------|---|--|
| O                  | MIN.                                        | NOM. | MAX. | MIN.  | NOM.  | MAX.  |   |  |
| Α                  | 0.91                                        | 1.03 | 1.13 | 0.035 | 0.041 | 0.044 | - |  |
| A1                 | PLEASE REFER TO<br>LAMINATE CONTROL DRAWING |      |      |       |       |       |   |  |
| b                  | 0.32                                        | 0.35 | 0.40 | 0.013 | 0.014 | 0.016 | 3 |  |
| С                  | -                                           | 0.10 | -    | -     | 0.004 | -     | - |  |
| D                  | 2.88                                        | 3.00 | 3.12 | 0.113 | 0.118 | 0.123 | - |  |
| D1                 | 1.45                                        | 1.50 | 1.57 | 0.057 | 0.059 | 0.062 | 3 |  |
| Е                  | 2.88                                        | 3.00 | 3.12 | 0.113 | 0.118 | 0.123 | - |  |
| E1                 | 2.70                                        | 2.75 | 2.85 | 0.106 | 0.108 | 0.112 | 3 |  |
| е                  |                                             | 0.60 |      |       | 0.024 |       | 3 |  |
| L                  | 0.32                                        | 0.35 | 0.40 | 0.013 | 0.014 | 0.016 | 3 |  |

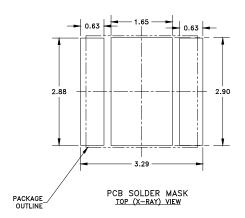
### **NOTES:**

- 1. CONTROLLING DIMENSIONS: MILLIMETERS
- 1. CONTROLLING DIMENSIONS: MILLIMETERS
  2. UNLESS SPECIFIED TOLERANCE=±0.076[0.003].
  3. PADS (INCLUDING CENTER) SHOWN UNIFORM
  SIZE FOR REFERENCE ONLY.
  ACTUAL PAD SIZE AND LOCATION WILL
  VARY WITHIN MIN. AND MAX. DIMENSIONS
  ACCORDING TO SPECIFIC LAMINATE DESIGN.
  4. UNLESS SPECIFIED DIMENSIONS ARE
  SYMMETRICAL ABOUT CENTER LINES SHOWN.
- LAMINATE CONTROL DRAWING SPECIFIED BY PART NUMBER.

Figure 13: Package Outline - 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module

# TOP BRAND



Figure 14: Branding Specification Package

# **PCB AND STENCIL DESIGN GUIDELINE**



# NOTES:

- (1) OUTLINE DRAWING REFERENCE: P8002478\_E
- (2) UNLESS SPECIFIED DIMENSIONS
  ARE SYMMETRICAL ABOUT CENTER
  LINES SHOWN.
- (3) DIMENSIONS IN MILLIMETERS.
- (4) VIAS SHOWN IN PCB METAL VIEW ARE FOR REFERENCE ONLY.
  NUMBER & SIZE OF THERMAL VIAS REQUIRED DEPENDENT ON HEAT DISSIPATION REQUIREMENT AND THE PCB PROCESS CAPABILITY.
- (5) RECOMMENDED STENCIL THICKNESS: APPROX. 0.150mm (6 Mils)



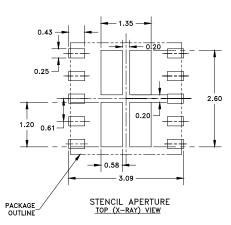
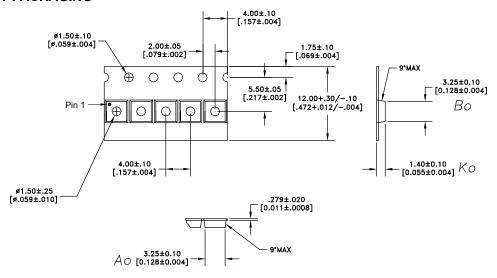
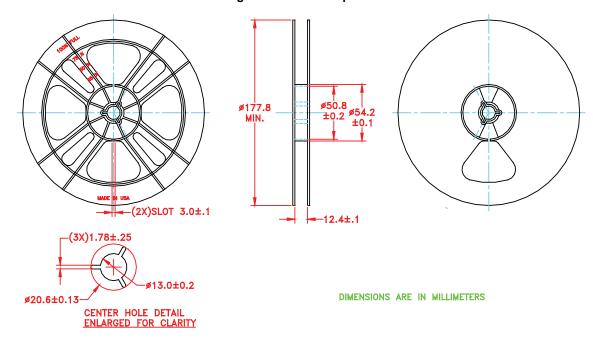




Figure 15: Recommended PCB Layout Information

# **COMPONENT PACKAGING**




NOTES:

DIMENSIONS ARE IN MILLIMETERS [INCHES]

1. MATERIAL: 3000 (CARBON FILLED POLYCARBONATE)

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 16: Carrier Tape



NOTES:

1. MATERIAL: BLACK CARBON POLYSTYRENE
SURFACE RESISTIVITY: 1X10<sup>4</sup>TO 1X10<sup>5</sup> ohms/square

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 17: Reel

#### ORDERING INFORMATION

| ORDER NUMBER | TEMPERATURE<br>RANGE | PACKAGE<br>DESCRIPTION                                              | COMPONENT PACKAGING                 |
|--------------|----------------------|---------------------------------------------------------------------|-------------------------------------|
| AWT6635Q7    | -30 °C to +90 °C     | RoHS Compliant 10 Pin<br>3 mm x 3 mm x 1 mm<br>Surface Mount Module | Tape and Reel, 2500 pieces per Reel |
| AWT6635P9    | -30 °C to +90 °C     | RoHS Compliant 10 Pin<br>3 mm x 3 mm x 1 mm<br>Surface Mount Module | Partial Tape and Reel               |



### ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

# **IMPORTANT NOTICE**

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

#### WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

