


## 50 Watt Discrete Power GaN on SiC HEMT



Bias conditions:  $V_d = 28$  V,  $I_{dq} = 1$  A,  $V_g = -3.6$  V Typical



### Key Features

- Frequency Range: DC - 18 GHz
- 46.7 dBm Nominal Psat at 3 GHz
- 55% Maximum PAE
- 17.5 dB Nominal Power Gain
- Bias:  $V_d = 28$  - 32 V,  $I_{dq} = 1$  A,  $V_g = -3.6$  V Typical
- Technology: 0.25 um Power GaN on SiC
- Chip Dimensions: 0.82 x 2.48 x 0.10 mm

### Primary Applications

- Defense & Aerospace
- Broadband Wireless

### Product Description

The TriQuint TGF2023-10 is a discrete 10 mm GaN on SiC HEMT which operates from DC-18 GHz. The TGF2023-10 is designed using TriQuint's proven 0.25um GaN production process. This process features advanced field plate techniques to optimize microwave power and efficiency at high drain bias operating conditions.

The TGF2023-10 typically provides 46.7 dBm of saturated output power with power gain of 17.8 dB at 3 GHz. The maximum power added efficiency is 55% which makes the TGF2023-10 appropriate for high efficiency applications.

Lead-free and RoHS compliant

Datasheet subject to change without notice.

**Table I**  
**Absolute Maximum Ratings 1/**

| Symbol | Parameter                   | Value      | Notes     |
|--------|-----------------------------|------------|-----------|
| Vd     | Drain Voltage               | 40 V       | <u>1/</u> |
| Vg     | Gate Voltage Range          | -50 to 0 V |           |
| Vdg    | Drain-Gate Voltage          | 80 V       |           |
| Id     | Drain Current               | 10 A       | <u>2/</u> |
| Ig     | Gate Current                | 56 mA      |           |
| Pin    | Input Continuous Wave Power | 40 dBm     | <u>2/</u> |
| Tch    | Channel Temperature         | 200 °C     |           |

1/ These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.

2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV.

**Table II**  
**Recommended Operating Conditions**

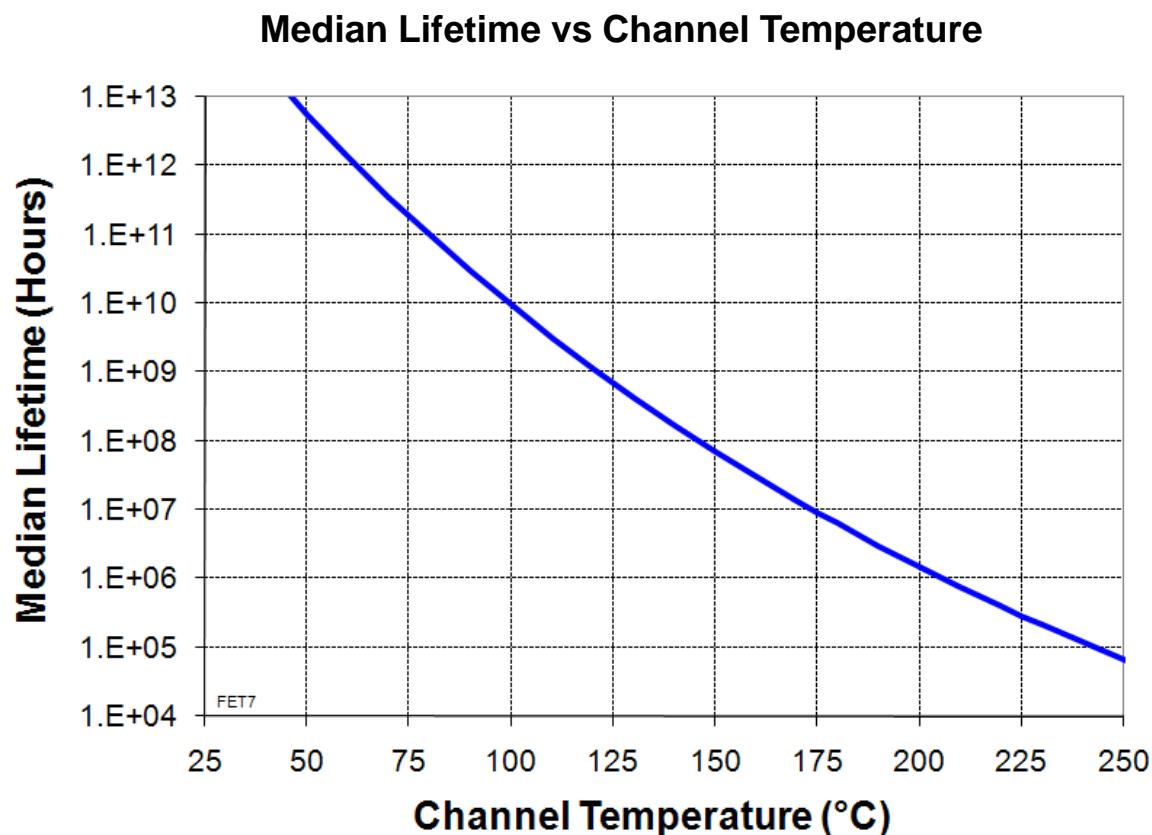
| Symbol   | Parameter                    | Value     |
|----------|------------------------------|-----------|
| Vd       | Drain Voltage                | 28 - 32 V |
| Idq      | Drain Current                | 1 A       |
| Id_Drive | Drain Current under RF Drive | 3 A       |
| Vg       | Gate Voltage                 | -3.6 V    |

**Table III**  
**RF Characterization Table 1/**  
**Bias:  $V_d = 28$  V,  $I_{dq} = 1000$  mA,  $V_g = -3.6$ V Typical**

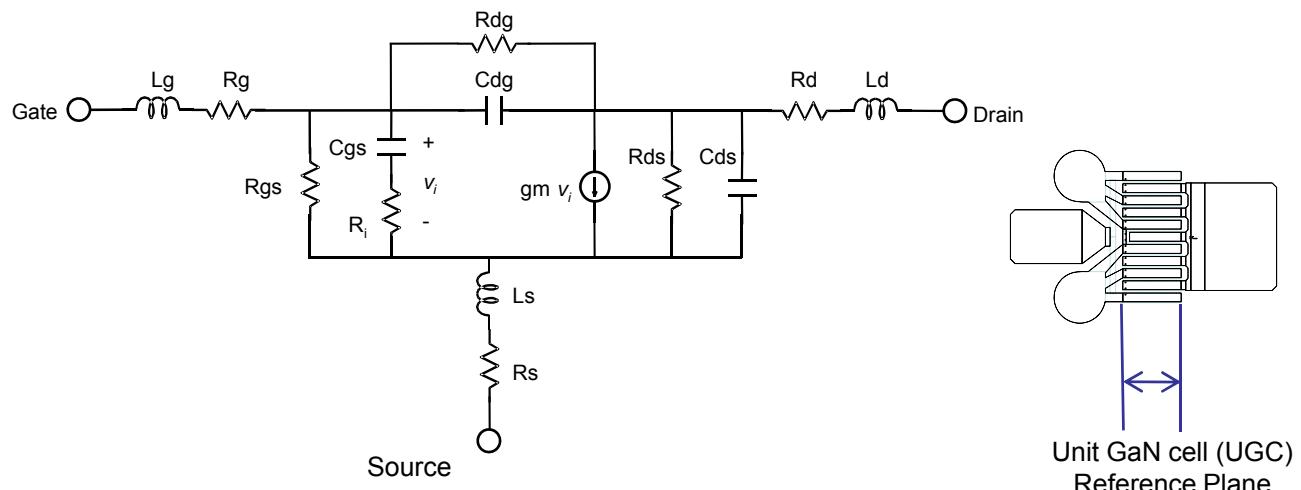
| SYMBOL                   | PARAMETER              | 3 GHz | 6 GHz | 10 GHz | 14 GHz | UNITS |
|--------------------------|------------------------|-------|-------|--------|--------|-------|
| <b>Power Tuned:</b>      |                        |       |       |        |        |       |
| Psat                     | Saturated Output Power | 46.7  | 46.0  | 45.8   | 44.3   | dBm   |
| PAE                      | Power Added Efficiency | 55    | 53    | 47     | 38     | %     |
| Gain                     | Power Gain             | 17.5  | 11.5  | 8.9    | 5.6    | dB    |
| <b>Efficiency Tuned:</b> |                        |       |       |        |        |       |
| Psat                     | Saturated Output Power | 45.4  | 44.3  | 45.5   | 44.3   | dBm   |
| PAE                      | Power Added Efficiency | 60    | 60    | 49     | 39     | %     |
| Gain                     | Power Gain             | 16.8  | 12.1  | 9.2    | 5.5    | dB    |

| SYMBOL                   | PARAMETER            | 3 GHz | 6 GHz | 10 GHz | 14 GHz | UNITS |
|--------------------------|----------------------|-------|-------|--------|--------|-------|
| <b>Power Tuned:</b>      |                      |       |       |        |        |       |
| R <sub>p 2/</sub>        | Parallel Resistance  | 79.3  | 81.9  | 61.5   | 49.9   | Ω-mm  |
| C <sub>p 2/</sub>        | Parallel Capacitance | 0.524 | 0.348 | 0.426  | 0.432  | pF/mm |
| <b>Efficiency Tuned:</b> |                      |       |       |        |        |       |
| R <sub>p 2/</sub>        | Parallel Resistance  | 153   | 171   | 72.1   | 53.1   | Ω-mm  |
| C <sub>p 2/</sub>        | Parallel Capacitance | 0.426 | 0.372 | 0.414  | 0.472  | pF/mm |

1/ Values in this table are engineering estimates scaled from measurements on the 1.25 mm GaN/SiC unit cell (see TGF2023-01 datasheet)


2/ Large signal equivalent output network (normalized) (see figure, pg 7)

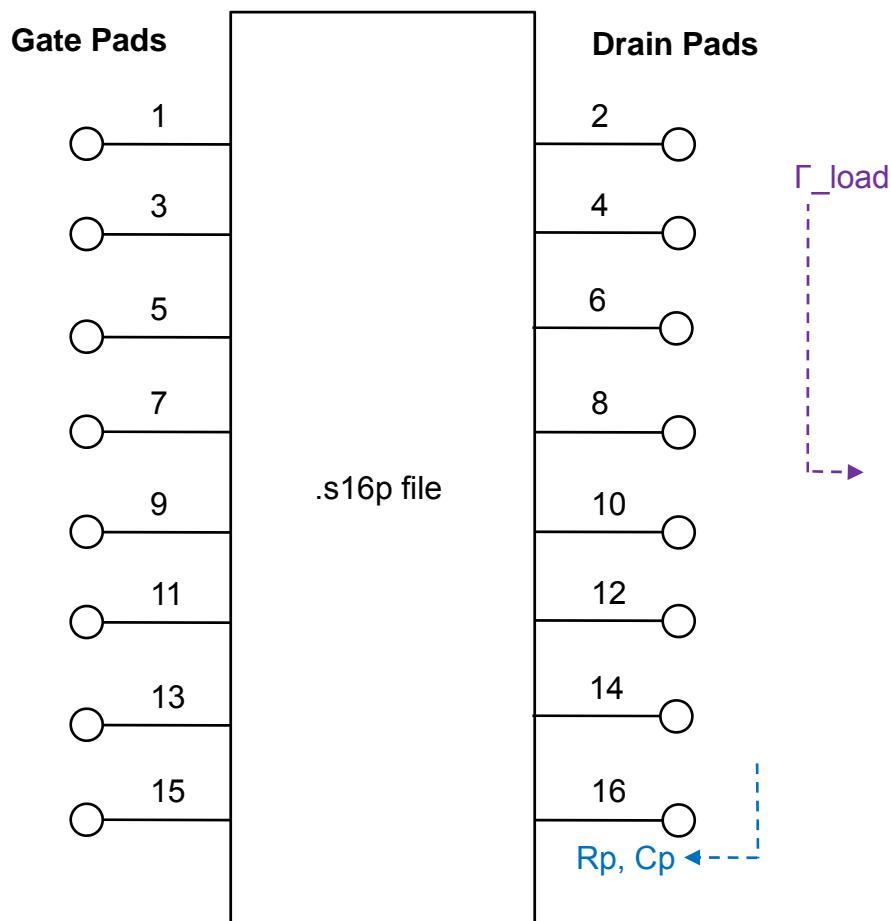
**Table IV**  
**Power Dissipation and Thermal Properties 1/**


| Parameter                                           | Test Conditions                                                                  | Value                                                              | Notes     |
|-----------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|
| Maximum Power Dissipation                           | Tbaseplate = 70 °C                                                               | Pd = 64 W<br>Tchannel = 200 °C<br>Tm = 1.5E+6 Hrs                  | <u>2/</u> |
| Thermal Resistance, $\theta_{jc}$                   | Vd = 28 V<br>Id = 1 A<br>Pd = 28 W<br>Tbaseplate = 70 °C                         | $\theta_{jc}$ = 2.0 (°C/W)<br>Tchannel = 126 °C<br>Tm = 6.4E+8 Hrs |           |
| Thermal Resistance, $\theta_{jc}$<br>Under RF Drive | Vd = 28 V<br>Id = 2.98 A<br>Pout = 46.7 dBm<br>Pd = 37.6 W<br>Tbaseplate = 70 °C | $\theta_{jc}$ = 2.0 (°C/W)<br>Tchannel = 145 °C<br>Tm = 1.1E+8 Hrs |           |
| Mounting Temperature                                | 30 Seconds                                                                       | 320 °C                                                             |           |
| Storage Temperature                                 |                                                                                  | -65 to 150 °C                                                      |           |

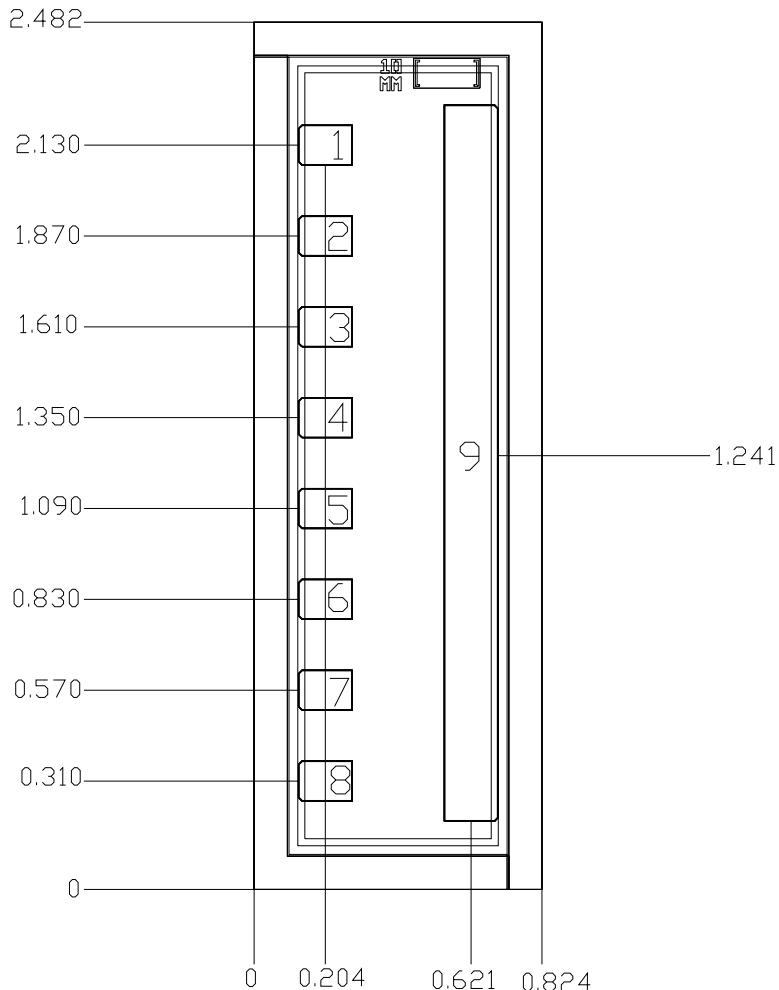
1/ Assumes eutectic attach using 1mil thick 80/20 AuSn mounted to a 10mil CuMo Carrier Plate

2/ Channel operating temperature will directly affect the device median lifetime. For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels.




## Linear Model for 1.25 mm Unit GaN Cell (UGC)




| MODEL PARAMETER | Vd=28V<br>Idq=125mA | UNITS    |
|-----------------|---------------------|----------|
| Rg              | 0.78                | $\Omega$ |
| Rs              | 0.13                | $\Omega$ |
| Rd              | 1.28                | $\Omega$ |
| gm              | 0.270               | S        |
| Cgs             | 1.79                | pF       |
| Ri              | 0.26                | $\Omega$ |
| Cds             | 0.308               | pF       |
| Rds             | 123.6               | $\Omega$ |
| Cgd             | 0.064               | pF       |
| Tau             | 2.78                | pS       |
| Ls              | 0.0058              | nH       |
| Lg              | -0.013              | nH       |
| Ld              | 0.018               | nH       |
| Rgs             | 8900                | $\Omega$ |
| Rgd             | 1730000             | $\Omega$ |

## Complete 10mm GaN HEMT Linear Model

Includes 8 UGC, 9 vias, and 16 bonding pads



## Mechanical Drawing



Units: millimeters

Thickness: 0.100

Die x,y size tolerance: +/- 0.050

Chip edge to bond pad dimensions are shown to center of pad

Ground is backside of die

|                 |    |               |
|-----------------|----|---------------|
| Bond Pad #1 - 8 | Vg | 0.154 x 0.115 |
| Bond Pad #9     | Vd | 0.154 x 2.050 |

**GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.**

## Assembly Notes

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

Reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- Do not use any kind of flux.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Interconnect process assembly notes:

- Ball bonding is the preferred interconnect technique, except where noted on the assembly diagram.
- Force, time, and ultrasonics are critical bonding parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.

## Ordering Information

| Part       | ECCN        | Package Style  |
|------------|-------------|----------------|
| TGF2023-10 | 3A001.b.3.b | GaN on SiC Die |

**GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.**