

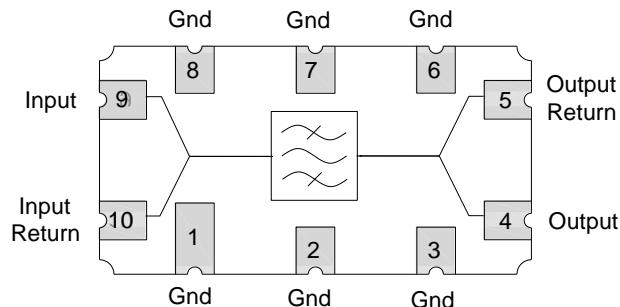
Applications

- For WCDMA applications

Product Features

- Usable bandwidth 3.84 MHz
- High attenuation
- Balanced operation
- Ceramic Surface Mount Package (SMP)
- Small Size
- Hermetic **RoHS** compliant, **Pb-free**

General Description


The 856496 is a high-performance IF SAW filter with a center frequency of 208 MHz and a 1 dB bandwidth of 3.84 MHz.

It features low loss with excellent attenuation, and is designed to be used with a balanced pin input and output. The small size of this surface mounted filter makes it an economical choice for demanding applications such as WCDMA or other similar high data rate communications standards.

This device is RoHS compliant and Pb-free.

Functional Block Diagram

Top view

Pin Configuration

Pin # SE	Description
9	Input
10	Input Return
4	Output
5	Output Return
1,2,3,6,7,8	Case Ground

Ordering Information

Part No.	Description
856496	packaged part
856496-EVB	evaluation board

Standard T/R size = 4000 units/reel.

Specifications

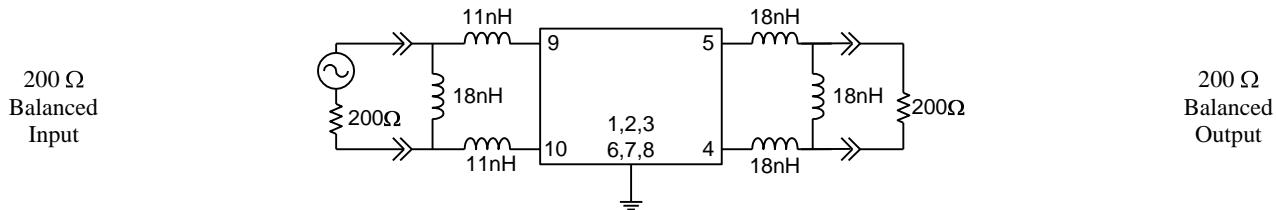
Electrical Specifications ⁽¹⁾

Specified Temperature Range: ⁽²⁾ -40 to +85 °C

Parameter ⁽³⁾	Conditions	Min	Typical ⁽⁴⁾	Max	Units
Center Frequency		-	208	-	MHz
Insertion Loss $F_0 \pm 1.92$ MHz	206.08 – 209.92 MHz	-	11.5	13	dB
1 dB Bandwidth ⁽⁵⁾	206.08 – 209.92 MHz	3.84	4.23	-	MHz
Amplitude Variation $F_0 \pm 1.92$ MHz	206.08 – 209.92 MHz	-	0.8	1.0	dB p-p
Mean Group Delay $F_0 \pm 1.92$ MHz	206.08 – 209.92 MHz	1.029	1.035	1.039	-
Phase Ripple $F_0 \pm 1.92$ MHz	206.08 – 209.92 MHz	-	5.0	-	deg
Phase Ripple RMS $F_0 \pm 1.92$ MHz	206.08 – 209.92 MHz	-	1.2	2.0	deg RMS
EVM $F_0 \pm 1.92$ MHz	206.08 – 209.92 MHz	-	3.0	6.0	%
Stop band Attenuation ⁽⁵⁾					
148 - 180 MHz	($F_0 - 60$ to $F_0 - 28$ MHz)	55	70	-	dB
180 - 190 MHz	($F_0 - 28$ to $F_0 - 18$ MHz)	45	63	-	dB
190 - 203 MHz	($F_0 - 18$ to $F_0 - 5$ MHz)	40	45	-	dB
203 - 204.7 MHz	($F_0 - 5$ to $F_0 - 3.3$ MHz)	36	39	-	dB
204.7 - 205.2 MHz	($F_0 - 3.3$ to $F_0 - 2.8$ MHz)	28	31	-	dB
205.2 - 205.4 MHz	($F_0 - 2.8$ to $F_0 - 2.6$ MHz)	25	30	-	dB
205.4 - 205.485 MHz	($F_0 - 2.6$ to $F_0 - 2.515$ MHz)	17	26	-	dB
210.515 - 210.6 MHz	($F_0 + 2.515$ to $F_0 + 2.6$ MHz)	17	26	-	dB
210.6 - 210.8 MHz	($F_0 + 2.6$ to $F_0 + 2.8$ MHz)	23	26	-	dB
210.8 - 211.3 MHz	($F_0 + 2.8$ to $F_0 + 3.3$ MHz)	28	30	-	dB
211.3 - 213 MHz	($F_0 + 3.3$ to $F_0 + 5$ MHz)	33	35	-	dB
213 - 226 MHz	($F_0 + 5$ to $F_0 + 18$ MHz)	40	42	-	dB
226 - 236 MHz	($F_0 + 18$ to $F_0 + 28$ MHz)	45	56	-	dB
236 - 268 MHz	($F_0 + 28$ to $F_0 + 60$ MHz)	55	58	-	dB
Source Impedance (balanced) ⁽⁶⁾	-	-	200	-	Ω
Load Impedance (balanced) ⁽⁶⁾	-	-	200	-	Ω

Notes:

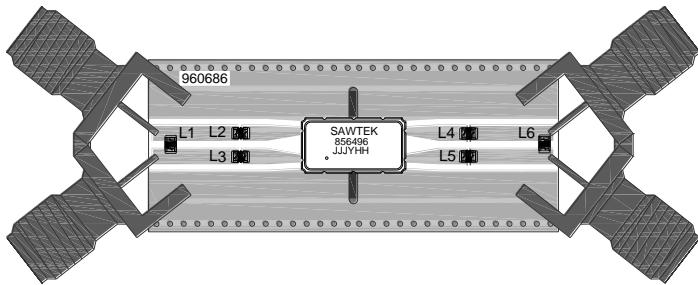
1. All specifications are based on the TriQuint schematic for the main reference design shown on page 3
2. In production, devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temperature
3. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances
4. Typical values are based on average measurements at room temperature
5. Relative to minimum insertion loss
6. This is the optimum impedance in order to achieve the performance shown


Absolute Maximum Ratings

Parameter	Rating
Operating Temperature	-40 to +85 °C
Storage Temperature	-40 to +85 °C

Operation of this device outside the parameter ranges given above may cause permanent damage.

Reference Design


Schematic

Notes:

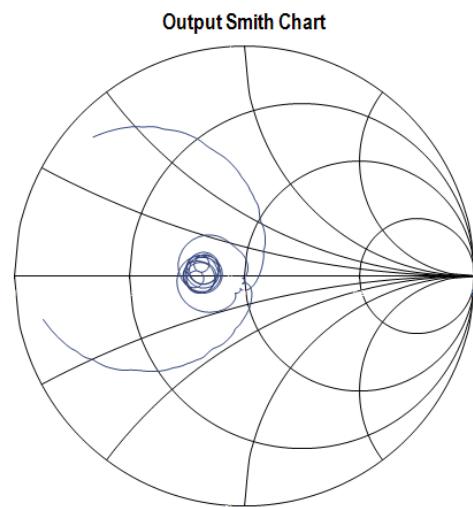
1. Actual matching values may vary due to PCB layout and parasitics

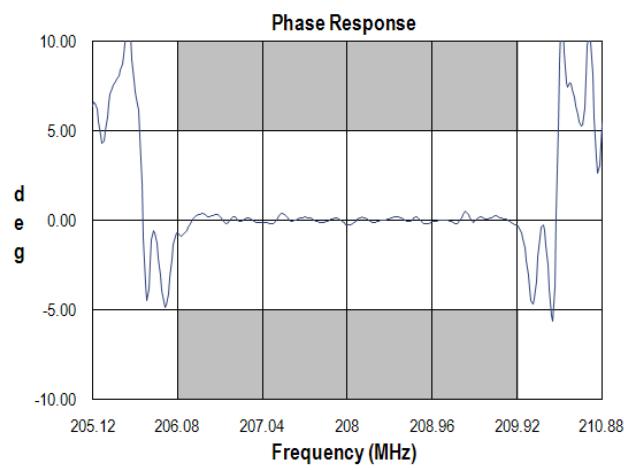
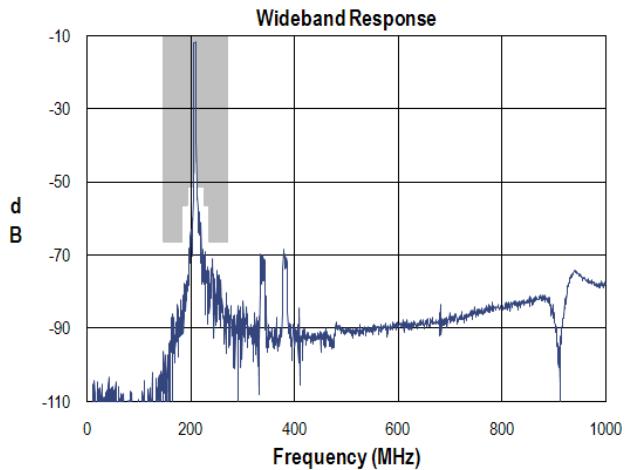
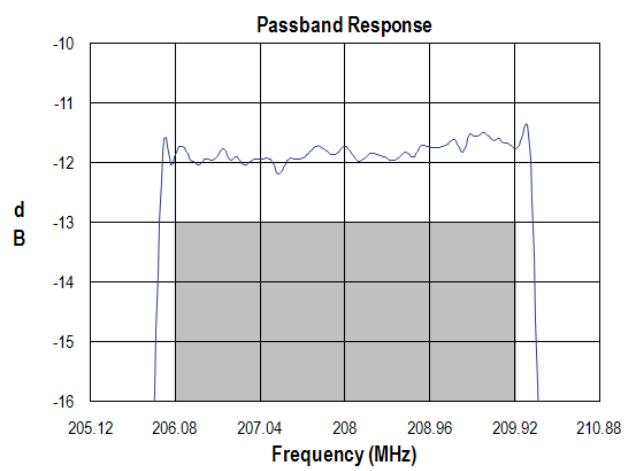
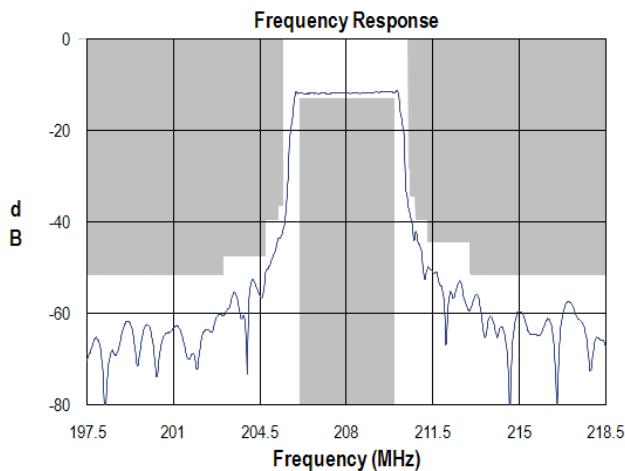

PC Board

Notes:

- 1. Top, middle & bottom layers: 1 oz copper
- 2. Substrates: FR4 dielectric, .031" thick
- 3. Finish plating: Nickel: 3-8µm thick, Gold: .03-.2µm thick
- 4. Hole plating: Copper min .0008µm thick

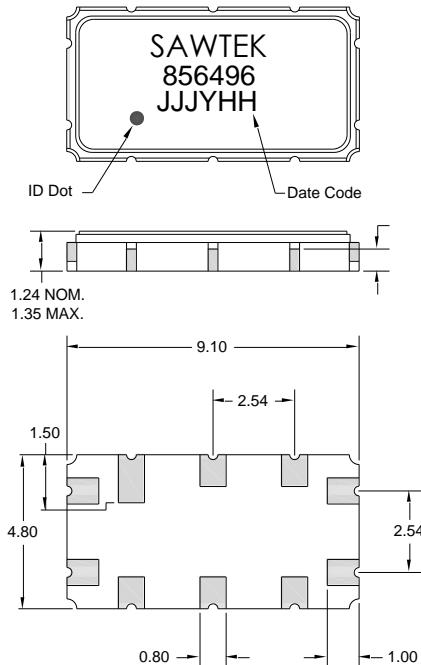
Mounting Configuration







Notes:

1. All dimensions are in millimeters.
2. This footprint represents a recommendation only.

Bill of Material

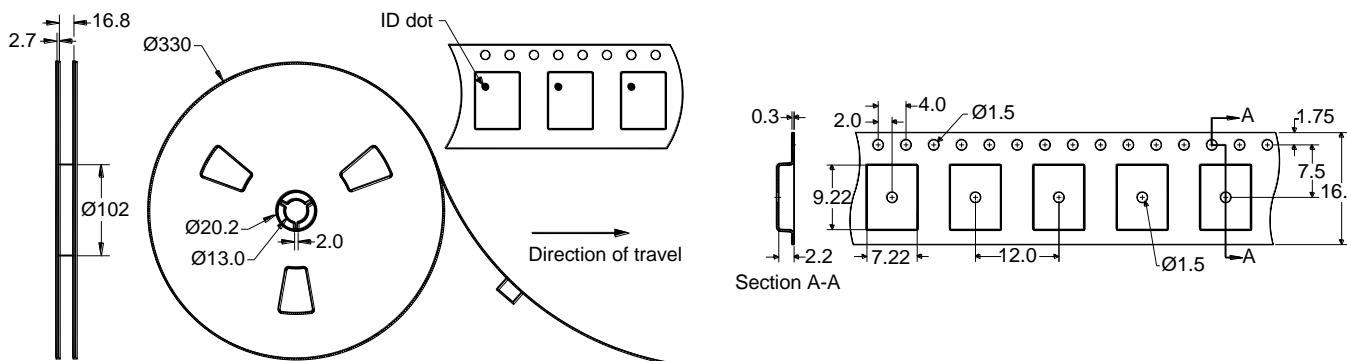

Reference Desg.	Value	Description	Manufacturer	Part Number
L1	18nH	Coil Wire-wound, 0603, 5%	Coillcraft	0603CS-18NXJBC
L2	11nH	Coil Wire-wound, 0603, 5%	Coillcraft	0603CS-11NXJBC
L3	11 nH	Coil Wire-wound, 0603, 5%	Coillcraft	0603CS-11NXJBC
L4	18 nH	Coil Wire-wound, 0603, 5%	Coillcraft	0603CS-18NXJBC
L5	18 nH	Coil Wire-wound, 0603, 5%	Coillcraft	0603CS-18NXJBC
L6	18 nH	Coil Wire-wound, 0603, 5%	Coillcraft	0603CS-18NXJBC
SMA	N/A	SMA connector	Johnson Components	142-0701-801
PCB	N/A	3-layer	multiple	960686

Typical Performance (at room temperature)

Mechanical Information

Package Information, Dimensions and Marking

Package Style: SMP-35C
Dimensions: 9.10 x 4.80 x 1.24 mm


Body: Al_2O_3 ceramic
Lid: Kovar, Ni plated
Terminations: Au plating 0.5 - 1.0 μ m, over a 2-6 μ m Ni plating

All dimensions shown are nominal in millimeters
All tolerances are ± 0.15 mm except overall length and width
 ± 0.10 mm

The date code consists of day of the current year (Julian, 3 digits), last digit of the year (1 digit) and hour (2 digits)

Tape and Reel Information

Standard T/R size = 4000 units/reel. All dimensions are in millimeters

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: 1C

Value: Passes $\geq 1150V$ min.
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: B

Value: Passes $\geq 250V$ min.
Test: Machine Model (MM)
Standard: JEDEC Standard JESD22-A115

MSL Rating

Devices are Hermetic, therefore MSL is not applicable.

Solderability

Compatible with the latest version of J-STD-020, lead free solder, 260°C

Refer to [Soldering Profile](#) for recommended guidelines.

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A ($C_{15}H_{12}Br_4O_2$) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Email: info-sales@tqs.com

Tel: +1.407.886.8860
Fax: +1.407.886.7061

For technical questions and application information:

Email: applications.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.