

#### **Product Features**

• High Output Power : Pout =560W(Typ.)

High Gain: GP =14dB(Typ.)
High Efficiency: 65%(Typ.)
High thermal stability

• Internally matched for ease of use

• 20% Duty Cycle, 200us Pulse Width

#### **Applications**

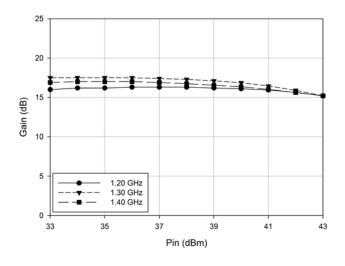
• Radar system

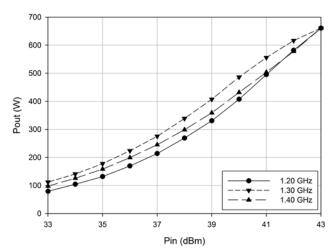


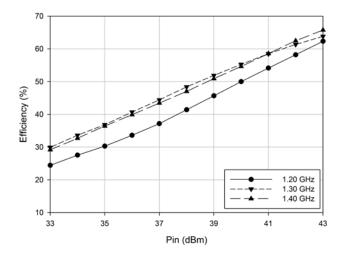
#### **Description**

The RRP1214500-14 is designed for Radar system application frequencies from 1.2GHz to 1.4GHz and GaN HEMT technology has been used that performs high breakdown voltage, wide bandwidth and high efficiency. Since it is high efficiency amplifier, it can perform at max. 20% duty cycle and 200us of pulse width.

#### **Electrical Specifications** @ $V_{DS} = 50V$ , T = 25°C, $50\Omega$ System


| PARAMETER             | UNIT | MIN  | ТҮР  | MAX  | SYMBOL            |
|-----------------------|------|------|------|------|-------------------|
| Operating Frequency   | MHz  | 1200 | -    | 1400 | $f_{O}$           |
| Operating Bandwidth   | MHz  | -    | 200  | -    | BW                |
| Output Pulse Power    | W    | 500  | 560  | -    | Po                |
| Input Pulse Power     | dBm  | -    | 43.5 | -    | $P_{\rm I}$       |
| Power Gain            | dB   | 13.5 | 14   | -    | $G_P$             |
| Gain Flatness         | dB   | -    | 0.5  | 1.0  | $\Delta G_P$      |
| Duty Cycle            | %    | -    | 10   | 20   | DC                |
| Pulse Width           | us   | -    | 100  | 200  | PW                |
| Efficiency            | %    | 55   | 65   | -    | $E_{\mathrm{ff}}$ |
| Amplitude Pulse Droop | dB   | -    | 0.5  | 1.0  | Droop             |
| Harmonics 1 to N      | dBc  | 20   | 30   | -    | $H_N$             |
| Spurious Level        | dBc  | 60   | -    | -    | Spur              |
| Rise Time             | ns   | -    | -    | 200  | t <sub>r</sub>    |
| Fall Time             | ns   | -    | -    | 200  | $t_{\rm f}$       |
| Phase Deviation       | 0    | -15  | -    | 15   | Δφ                |


<sup>\*</sup> Above electrical specifications is measured by connecting electrolytic condenser 1,500uF to DC. Please make sure that electrolytic condenser is connected properly while testing the module.


<sup>\*</sup> Custom design available



## **Typical Performance** @ 25°C





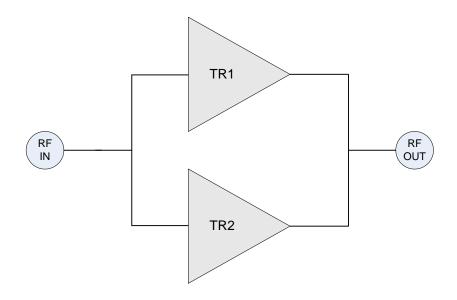




## **Absolute Maximum Ratings**

| PARAMETER                      | UNIT | RATING    | SYMBOL         |
|--------------------------------|------|-----------|----------------|
| Gate-Source Voltage            | V    | -10 ~ 0   | $V_{GS}$       |
| Drain- Source Voltage          | V    | 110       | $V_{DS}$       |
| Gate Current                   | mA   | 70        | $I_G$          |
| Operating Junction Temperature | °C   | 225       | $T_{J}$        |
| Operating Flange Temperature   | °C   | -20 ~ 100 | T <sub>C</sub> |
| Storage Temperature            | °C   | -50 ~ 150 | $T_{STG}$      |

## **Operating Voltages**


| PARAMETER            | UNIT | NOMINAL VOLTAGE | VOLTAGE ACCURACY | SYMBOL   |
|----------------------|------|-----------------|------------------|----------|
| Drain-Source Voltage | V    | 50              | ± 2%             | $V_{DS}$ |
| Gate-Source Voltage  | V    | -4(ON), -8(OFF) | ± 2%             | $V_{GS}$ |

### **Power Supply**

| PARAMETER                 | UNIT | MIN | TYP | MAX | SYMBOL   |
|---------------------------|------|-----|-----|-----|----------|
| Drain-Source Current(AVG) | A    | -   | -   | -   | $I_{DS}$ |

<sup>\*</sup> Duty Cycle 10%, Pulse Width 100us

## **Block diagram**



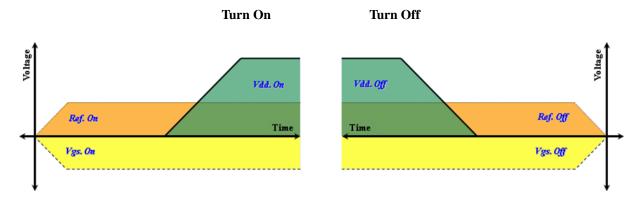


#### **Precautions**

This product is a Pulse Amplifier based on a Gallium Nitride Transistor.

The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off.

The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier.


The required sequence for power supply is as follows.

#### **During Turn-On**

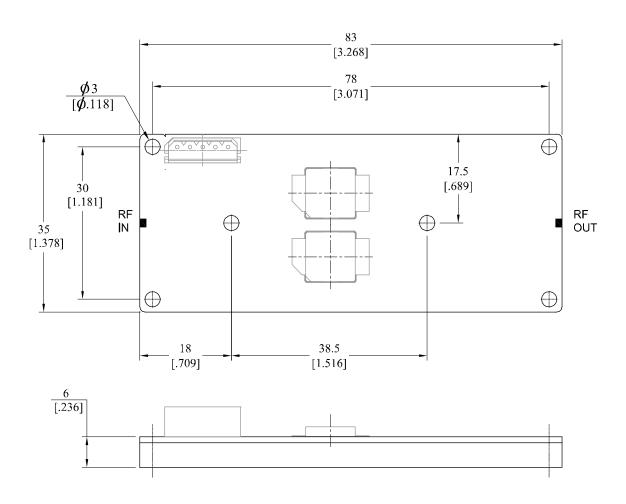
- 1. Connect GND.
- 2. Apply -4V to  $V_{GS}$ .
- 3. Apply 50V to  $V_{DS}$ .
- 4. Turn on the  $V_{GS}$ , and then, turn on the  $V_{DS}$ .
- 5. Apply the RF Power.

#### **During Turn-Off**

- 1. Turn off RF power.
- 2. Turn off  $V_{DS}$ , and then, turn off the  $V_{GS}$ .
- 3. Remove all connections.



- Sequence Timing Diagram -


### **Mechanical Specifications**

| PARAMETER    | UNIT | ТҮР                                  |  |
|--------------|------|--------------------------------------|--|
| Mass         | kg   | 0.06                                 |  |
| Dimension    | mm   | 83 x 35 x 12                         |  |
| DE C         | -    | 50 ohm Pad : RF Input                |  |
| RF Connector |      | 50 ohm Pad : RF Output               |  |
| DC Connector | -    | 5pin Molex Connector (Male) : Supply |  |



## **Outline Drawing**

\* Unit: mm[inch] | Tolerance ±0.2[.008]



## **Pin Description**

| Pin No | Description            | Pin No | Description           |
|--------|------------------------|--------|-----------------------|
| 1      | V <sub>DS</sub> (+50V) | 4      | GND                   |
| 2      | V <sub>DS</sub> (+50V) | 5      | V <sub>GS</sub> (-4V) |
| 3      | GND                    | -      | -                     |



#### **Revision History**

| Part Number   | Release Date | Version | Modification                        | Data Sheet Status |
|---------------|--------------|---------|-------------------------------------|-------------------|
| RRP1214500-14 | 2014.02.14   | 0.3     | Modified Spec. & Format             | Preliminary       |
| RRP1214500-14 | 2013.10.01   | 0.2     | Modified Spec. (Min DE : 55% → 60%) | Preliminary       |
| RRP1214500-14 | 2013.02.21   | 0.1     | -                                   | Preliminary       |

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-250-5078.