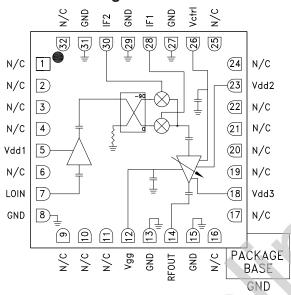


Analog Devices Welcomes Hittite Microwave Corporation

THIS PAGE INTENTIONALLY LEFT BLANK

v00.1115


GaAs MMIC I/Q UPCONVERTER 5.5 - 8.6 GHz

Typical Applications

The HMC6505ALC5 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar, EW & ELINT
- Satellite Communications
- Sensors

Functional Diagram

Features

High Conversion Gain: 15 dB Sideband Rejection: 22 dBc LO / RF Rejection: 14 dBc High Output IP3: +35 dBm

32 Lead 5x5 mm SMT Ceramic Package: 25 mm²

General Description

The HMC6505ALC5 is a compact GaAs MMIC I/Q upconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 15 dB with 22 dBc of sideband rejection. The HMC6505ALC5 utilizes a RF amplifier preceded by an I/Q mixer where the LO is driven by a driver amplifier. IF1 and IF2 mixer inputs are provided and an external 90° hybrid is needed to select the required sideband. The I/Q mixer topology reduces the need for filtering of the unwanted sideband. The HMC6505ALC5 is a much smaller alternative to hybrid style single sideband upconverter assemblies and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25$ °C, IF = 350 MHz, LO = +4 dBm, Vdd2, 3 = +5V, Idd2 + Idd3 = 120 mA, Vdd1 = +5V, Idd1 = 125 mA [1][2][6]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		5.5 - 7			7 - 8.6		GHz
Frequency Range, LO		5 - 10		6.5 - 11.6			GHz
Frequency Range, IF		DC - 3		DC - 3			GHz
Conversion Gain [5]	12	15		11	14		dB
Sideband Rejection	18	22		18	22		dBc
1 dB Compression (Output)		21			22		dBm
IP3 (Output)	31	35		31	35		dBm
LO / RF Rejection [3] [4]	7	10		11	14		dBc
RF Return Loss		16			17		dB
LO Return Loss		8			9		dB
IF1 Return Loss		10			10		dB
IF2 Return Loss		8			8		dB
Supply Current Idd1		125			125		mA
Supply Current Idd2 + Idd3 [2]		120			120		mA

^[1] Unless otherwise noted all measurements performed with high side LO, IF = 350 MHz and external IF 90° hybrid.

^[2] Adjust Vgg between -2 to 0V to achieve Idd2 + Idd3 = 120 mA Typical.

^[3] The LO / RF Rejection is defined as the LO signal level at the RF output port relative to the desired RF output signal level.

^[4] The LO / RF Rejection data is with IF = -6 dBm.

^[5] Data based on subtracting out board loss and loss of hybrid.

^{[6] +3}V can also be used for Vdd1.

v00.1115

GaAs MMIC I/Q UPCONVERTER 5.5 - 8.6 GHz

Electrical Specifications, (continued) [1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		5.5 - 7		7 - 8.6			GHz
Frequency Range, LO	5 - 10			6.5 - 11.6			GHz
Frequency Range, IF		DC - 3		DC - 3			GHz
Dynamic Range	18	20		18	20		dB
V Control	-4		0	-4		0	V
LO Power	-2	3	10	-2	3	10	dBm
Gain Flatness (150 MHz Segments)			0.5			0.5	dB
Noise Figure (Min Attenuation) [7]		11.5			12		dB

- [1] Unless otherwise noted all measurements performed with high side LO, IF = 350 MHz and external IF 90° hybrid.
- [7] Noise Figure measurement performed with high side LO, IF = 2500 MHz and external IF 90° hybrid.

MxN Spurious Outputs [1][2]

	nLO					
mIF	0	1	2	3	4	
0	х	17.3	35.1	57.5	62.6	
+1	80.6	0	39.6	66.4	93.3	
+2	49.9	64.3	40.6	72.3	91.5	
+3	96.7	57.8	87.4	78.5	89.8	
+4	88.5	100.8	89.3	94.2	91.7	

IF = 0.35 GHz @ -6 dBm LO = 8.5 GHz @ 0 dBm

	nLO					
mIF	0	1	2	3	4	
0	х	15.1	36.4	50.4	61.5	
+1	66.7	0	42.9	56.5	83.2	
+2	49.2	47.1	39.9	76.5	84.6	
+3	95.2	58.9	79.4	76	94.2	
+4	86.9	102.5	86.5	96.8	96.1	

IF = 0.35 GHz @ -6 dBm LO = 7.7 GHz @ 0 dBm

	nLO					
mIF	0	1	2	3	4	
0	х	11.6	23.6	38.4	60.1	
+1	59.8	0	42.9	45.4	70.9	
+2	48.5	50.4	39.4	79.9	76.7	
+3	86.9	61	87.5	76.2	94.3	
+4	85.2	82.4	86.2	97	95.7	

IF = 0.35 GHz @ -6 dBm LO = 7.0 GHz @ 0 dBm

- [1] Data taken without external IF 90° hybrid
- [2] All values in dBc below RF power level (LO + IF) USB
- [3] All values in dBc below RF power level (LO IF) LSB

MxN Spurious Outputs [1][3]

			nLO		
mIF	0	1	2	3	4
0	Х	17.3	35.1	56.5	62.7
-1	80.6	0	42.8	62.9	93
-2	49.9	53.3	39.3	72.9	90.3
-3	96.9	56	90	75	93
-4	88.2	101.9	89.4	96.1	91.1

IF = 0.35 GHz @ -6 dBm LO = 8.5 GHz @ 0 dBm

	nLO					
mIF	0	1	2	3	4	
0	х	15	36.4	50.6	60.1	
-1	66.6	0	48.2	51.4	82.8	
-2	49.2	47	38.1	79.7	79.9	
-3	95.9	56.7	86.7	75.4	93.1	
-4	86.9	94	88.3	97.4	93.8	

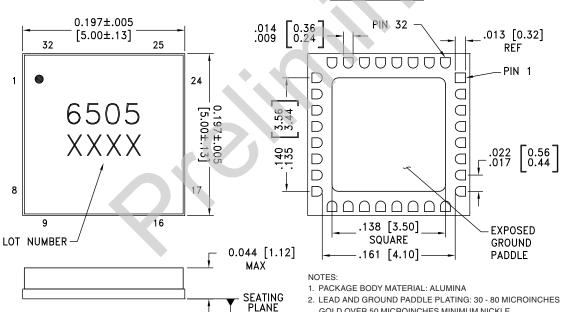
IF = 0.35 GHz @ -6 dBm LO = 7.7 GHz @ 0 dBm

		nLO					
mIF	0	1	2	3	4		
0	х	11.6	23.5	38.3	58.7		
-1	59.7	0	46.7	36.9	73.4		
-2	48.6	53	37.7	75.2	69.1		
-3	87	58	75	70.9	91.1		
-4	84.8	87	83.6	99.5	93.1		

IF = 0.35 GHz @ -6 dBm LO = 7.0 GHz @ 0 dBm

v00.1115

GaAs MMIC I/Q UPCONVERTER 5.5 - 8.6 GHz


Absolute Maximum Ratings

+20 dBm
+10 dBm
-5V to +0.3V
+5.5V
+5.5V
-3V to 0V
175 °C
1.65 W
54.6 °C/W
-65 to +150 °C
-40 to +85 °C
Class1A

Outline Drawing

ВОТТОМ

-C-

- GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND