

(866) 531-6285 orders@ni.com

Requirements and Compatibility | Ordering Information | Detailed Specifications For user manuals and dimensional drawings, visit the product page resources tab on ni.co

Last Revised: 2014-11-06 07:15:16.0

# NI PXIe-4142, NI PXIe-4143

# High-Channel-Count Source Measure Units: 24 V, 150 mA





- 4 SMU channels per single-slot, 3U PXI Express module
- ±24 V at ±150 mA output with 4-quadrant operation
- NI PXIe-4143 features NI SourceAdapt technology for maximum stability and minimum
  Continuous sampling rates of up to 600,000 S/s transient response times
- NI PXIe-4143 provides 10 pA current measurement sensitivity for accurate idle current measurements

  - Onboard hardware sequencing engine for triggering and synchronization

## Overview

The NI PXIe-4142/43 source measure units (SMUs) are high-channel-count, high-speed SMUs with four identical SMU channels per PXI Express slot. Each SMU offers 4-quadrant operation to source or sink up to ±24 V at ±150 mA. To help reduce measurement times and capture important transient device characteristics, each SMU can sample up to 600 kS/s. Additionally, source-measure rates of up to 15 kS/s allow quick I-V characterization of devices under test. With integrated remote (4-wire) sensing, these SMUs can generate precision measurements of the device. Additionally the new precision 4-channel SMU, the NI PXIe-4143, has current measurement sensitivity of 10 pA for accurate characterization of idle currents.

Back to Top

# **Requirements and Compatibility**

#### **OS** Information

- Windows 7
- Windows Vista
- Windows XP

#### **Driver Information**

NI-DCPower

#### Software Compatibility

- LabVIEW
- LabWindows/CVI
- NI TestStand Development System
- Visual Basic .NET
- Visual C++
- Visual Studio .NET

Back to Top

# **Comparison Tables**

|                             | NI PXIe-4142                                 | NI PXIe-4143                       |
|-----------------------------|----------------------------------------------|------------------------------------|
| SMU Channels                | 4                                            | 4                                  |
| Voltage/Current Coverage    | ±24 V at ±150 mA                             | ±24 V at ±150 mA                   |
| Voltage Measure Range       | 24 V                                         | 24 V                               |
| Voltage Measure Sensitivity | 200 µV                                       | 20 µV                              |
| Current Measure Ranges      | 10 $\mu A,$ 100 $\mu A,$ 1 mA, 10 mA, 150 mA | 10 µA, 100 µA, 1 mA, 10 mA, 150 mA |
| Current Measure Sensitivity | 100 pA                                       | 10 pA                              |

|                             | NI PXIe-4142       | NI PXIe-4143                                      |
|-----------------------------|--------------------|---------------------------------------------------|
| Maximum Sampling Rate       | 600 kS/s           | 600 kS/s                                          |
| Maximum Source-Measure Rate | 15 kS/s            | 15 kS/s                                           |
| Compensation Modes          | Slow, Normal, Fast | Slow, Normal, Fast, Custom                        |
| Additional Features         |                    | NI SourceAdapt technology for custom compensation |
|                             |                    | Programmable output resistance                    |
|                             |                    | Back to To                                        |

# Application and Technology

# NI SourceAdapt Technology: The Next-Generation SMU Technology

The 4-channel precision SMUs PXIe-4141 and PXIe-4143 feature SourceAdapt technology. With this next-generation SMU technology, you can custom-tune the SMU response to any given load for maximum stability and minimum transient response times. This optimal SMU response protects the device under test from undesirable transients while achieving the fastest possible test times and removing system stability concerns from oscillations. The ability to achieve optimal response for any load means that these SMUs with SourceAdapt technology are ideal for testing devices such as microelectromechanical systems, multipin ICs with bypass capacitors, or any board- or chip-level test applications with a wide range of inductive or capacitive loads.

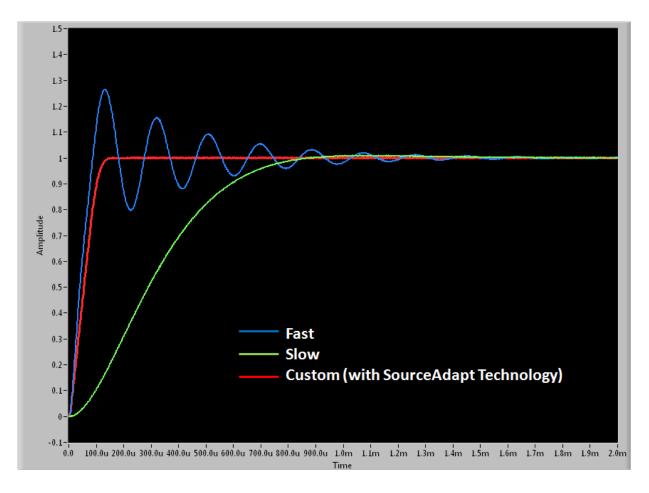


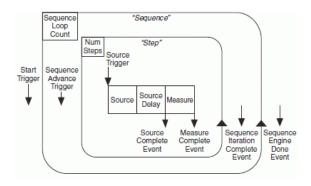

Figure 1. SMU Response to a Capacitive Load

NI SourceAdapt technology enables customized response (red) for maximum stability and minimum transient response times.

# Programmable Output Resistance

The NI PXIe-4143 also features programmable output resistance, so you can program the output resistance from -1 V/current range to +1 V/current range. For example, on the 150 mA range, you can vary the output resistance from  $-6.66\Omega$  to  $+6.66 \Omega$ . The positive range of the output resistance allows the SMU channel to emulate real-world devices with nonzero output resistance while the negative resistance range allows you to compensate for voltage drops due to resistive losses between the remote sense points and the DUT terminals.

# Hardware Control


With the NI-DCPower software test panel, you can quickly troubleshoot or debug SMU operation interactively. To get up and running fast, use the DCPower Express VIs as an intuitive, configuration-based method of controlling NI SMUs in the NI LabVIEW graphical development environment. For low-level control of SMU hardware, the IVI-compliant NI-DCPower instrument driver provides a complete API that exposes the full functionality of the hardware in an intuitive hierarchy. NI-DCPower also includes prewritten example programs that demonstrate concepts ranging from simple configuration to advanced sweeping and monitoring.

| 夏 NI-DCPower So                        | oft Front Panel: PXI | e-4141                |              |                         |
|----------------------------------------|----------------------|-----------------------|--------------|-------------------------|
| <u>F</u> ile <u>E</u> dit <u>H</u> elp |                      |                       |              |                         |
| Channel 0                              |                      |                       |              |                         |
| Output Function                        | DC Voltage 💌         | Outpu                 | it Enabled 🔽 | +00.0000 V              |
| Voltage Level                          | +00.0000 V 🚖         | Range                 | 10 V 💌       |                         |
| Current Limit                          | 100.000 mA 🛛 🚔       | Range                 | 100 mA 💌     | -000.003 mA             |
| Sense                                  | Remote 💌             | Transient<br>Response | Fast 💌       | Cmpl <b>CV</b> CC       |
| Channel 1                              |                      |                       |              | NATIONAL<br>INSTRUMENTS |
| Output Function                        | DC Current 🗨         | Outpu                 | it Enabled 🔲 |                         |
| Current Level                          | +100.000 mA 🗦        | Range                 | 100 mA 💌     | -000.003 mA             |
| Voltage Limit                          | 10.0000 V 🔄 🚔        | Range                 | 10 V 💌       | +00.0000 V              |
| Sense                                  | Local 💌              | Transient<br>Response | Normal 💌     | Cmpl CV CC              |
| Channel 2                              |                      |                       |              |                         |
| Output Function                        | DC Voltage 🗨         | Outpu                 | it Enabled 🔽 |                         |
| Voltage Level                          | +10.0000 V 🚖         | Range                 | 10 V 💌       | +10.0000 V              |
| Current Limit                          | 100.000 mA 📑         | Range                 | 100 mA 💌     | -000.004 mA             |
| Sense                                  | Local 🗨              | Transient<br>Response | Normal 💌     | Cmpl CY CC              |
| Channel 3                              |                      |                       |              | NATIONAL<br>INSTRUMENTS |
| Output Function                        | DC Voltage 🔍         | Outpu                 | it Enabled 🔽 |                         |
| Voltage Level                          | +00.0000 V 🚖         | Range                 | 10 V 💌       | +00.0000 V              |
| Current Limit                          | 10.0000 uA 🛛 🚔       | Range                 | 10 uA 💌      | -00.0004 uA             |
| Sense                                  | Local 💌              | Transient<br>Response | Normal 💌     | Cmpl <b>CV</b> CC       |

Figure 2. Use the NI-DCPower software test panel to quickly troubleshoot or debug the NI PXIe-414xSMUs.

# **Triggering and Synchronization**

The NI PXIe-414x modules feature a high-speed sequencing engine to synchronize operations between multiple SMUs within each module, across different NI PXIe-414x modules, or with other instruments. As shown in Figure 3, sending and receiving triggers or events is conducted through the PXI Express backplane to simplify programming as well as system wiring. This means that implementing precisely coordinated test programs involving multiple SMUs is straightforward.



# Figure 3. Sequence Engine Diagram for Triggering and Synchronization

#### Back to Top

# **Ordering Information**

For a complete list of accessories, visit the product page on ni.com.

| Products                                         | Part Number | Recommended Accessories  | Part Number |
|--------------------------------------------------|-------------|--------------------------|-------------|
| SMU Modules                                      |             |                          |             |
| PXIe-4142 Four-Channel SMU: 24V, 150mA           | 782430-01   | No accessories required. |             |
| PXIe-4143 Four-Channel Precision SMU: 24V, 150mA | 782431-01   | No accessories required. |             |
|                                                  |             |                          | Back to Top |

## Support and Services

## System Assurance Programs

NI system assurance programs are designed to make it even easier for you to own an NI system. These programs include configuration and deployment services for your NI PXI, CompactRIO, or Compact FieldPoint system. The NI Basic System Assurance Program provides a simple integration test and ensures that your system is delivered completely assembled in one box. When you configure your system with the NI Standard System Assurance Program, you can select from available NI system driver sets and application development environments to create customized, reorderable software configurations. Your system arrives fully assembled and tested in one box with your software preinstalled. When you order your system with the standard program, you also receive system-specific documentation including a bill of materials, an integration test report, a recommended maintenance plan, and frequently asked question documents. Finally, the standard program reduces the total cost of owning an NI system by providing three years of warranty coverage and calibration service. Use the online product advisors at ni.com/advisor to find a system assurance program to meet your needs.

#### Calibration

NI measurement hardware is calibrated to ensure measurement accuracy and verify that the device meets its published specifications. To ensure the ongoing accuracy of your measurement hardware, NI offers basic or detailed recalibration service that provides ongoing ISO 9001 audit compliance and confidence in your measurements. To learn more about NI calibration services or to locate a qualified service center near you, contact your local sales office or visit ni.com/calibration.

### **Technical Support**

Get answers to your technical questions using the following National Instruments resources.

- Support Visit ni.com/support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers who are located in NI sales offices around the world and speak the local language.
- Discussion Forums Visit forums.ni.com for a diverse set of discussion boards on topics you care about.
- Online Community Visit community.ni.com to find, contribute, or collaborate on customer-contributed technical content with users like you.

# Repair

While you may never need your hardware repaired, NI understands that unexpected events may lead to necessary repairs. NI offers repair services performed by highly trained technicians who quickly return your device with the guarantee that it will perform to factory specifications. For more information, visit ni.com/repair.

# **Training and Certifications**

The NI training and certification program delivers the fastest, most certain route to increased proficiency and productivity using NI software and hardware. Training builds the skills to more efficiently develop robust, maintainable applications, while certification validates your knowledge and ability.

- Classroom training in cities worldwide the most comprehensive hands-on training taught by engineers.
- On-site training at your facility an excellent option to train multiple employees at the same time.
- Online instructor-led training lower-cost, remote training if classroom or on-site courses are not possible.
- Course kits lowest-cost, self-paced training that you can use as reference guides.

.

Training memberships and training credits - to buy now and schedule training later.

Visit ni.com/training for more information.

## **Extended Warranty**

NI offers options for extending the standard product warranty to meet the life-cycle requirements of your project. In addition, because NI understands that your requirements may change, the extended warranty is flexible in length and easily renewed. For more information, visit ni.com/warranty.

#### OEM

NI offers design-in consulting and product integration assistance if you need NI products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

#### Alliance

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Partner program of more than 700 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

Back to Top

#### **Detailed Specifications**

This document provides the specifications for the NI PXIe-4142 four channel source-measure unit (SMU) and the NI PXIe-4143 four channel precision SMU. Specifications are subject to change without notice. For the most recent NI PXIe-4142/4143 specifications, visit ni.com/manuals.



Caution: Using the NI PXIe-4142/4143 in a manner not described in this document might impair the protection the NI PXIe-4142/4143 provides.

National Instruments defines the capabilities and performance of its Test & Measurement instruments as Specifications, Typical Specifications, and Characteristic or Supplemental Specifications. Data provided in this document are Specifications unless otherwise noted.

Specifications characterize the warranted performance of the instrument within the recommended calibration interval and under the stated operating conditions.

Typical Specifications are specifications met by the majority of the instruments within the recommended calibration interval and under the stated operating conditions. The performance of the instrument is not warranted.

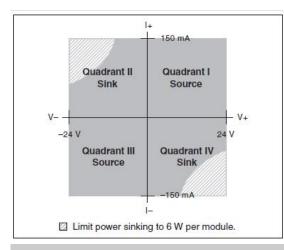
Characteristic or Supplemental Specifications describe basic functions and attributes of the instrument established by design or during development and not evaluated during Verification or Adjustment. They provide information that is relevant for the adequate use of the instrument that is not included in the previous definitions.

Unless otherwise noted, specifications are valid under the following conditions:

- Ambient temperature 23  $^\circ\text{C}$  ± 5  $^\circ\text{C}$ 

After 30 minute warm-up time

Self-calibration performed within the last 24 hours


To access the NI PXIe-4142/4143 documentation, navigate to Start»All Programs»National Instruments»NI-DCPower» Documentation.

## **Device Capabilities**

Table 1 and Figure 1 illustrate the voltage and the current source and sink ranges of the NI PXIe-4142/4143.

| Table: NI PXIe-4142/4143 Current Source and Sink Ranges                          |                   |                                            |  |
|----------------------------------------------------------------------------------|-------------------|--------------------------------------------|--|
| Channels                                                                         | DC Voltage Ranges | DC Current Source and Sink Ranges          |  |
| 0 through 3                                                                      | ±24 V             | 10 μΑ<br>100 μΑ<br>1 mA<br>10 mA<br>150 mA |  |
| Note: Channels 0 through 3 are isolated from earth ground but share a common LO. |                   |                                            |  |

Figure 1. NI PXIe-4142/4143 Quadrant Diagram, All Channels



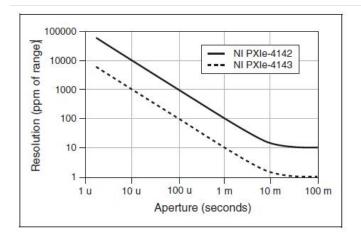
# **SMU Specifications**

Voltage Programming and Measurement Accuracy/Resolution

| Range | e Resolution and Noise (0.1 Hz – 10 Hz) |              | 1 Year Accuracy (23 °C ± 5 °C)<br>± (% of Voltage + Offset) |                 |                 | Temperature Coefficient<br>± (% of Voltage + Offset) / °C |
|-------|-----------------------------------------|--------------|-------------------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------|
|       |                                         |              | NI PXIe-4142                                                | NI PXIe-4143    |                 |                                                           |
|       | NI PXIe-4142                            | NI PXIe-4143 | Tcal ± 5 °C                                                 | Tcal ± 5 °C     | Tcal ± 1 °C     | 0 °C to 55 °C                                             |
| 24 V  | 200 µV                                  | 20 µV        | 0.1% + 10 mV                                                | 0.015% + 1.2 mV | 0.013% + 300 µV | 0.0005% + 1 μV                                            |

Current Programming and Measurement Accuracy/Resolution

| Range  | Resolution and Noise (0.1 Hz – 10 Hz) |              | 1 Year Accuracy (23 °C ± 5 °C)<br>± (% of current + offset) |                |                | Temperature Coefficient<br>± (% of Current + Offset) / °C |
|--------|---------------------------------------|--------------|-------------------------------------------------------------|----------------|----------------|-----------------------------------------------------------|
|        |                                       |              | NI PXIe-4142                                                | NI PXI         | e-4143         |                                                           |
|        | NI PXIe-4142                          | NI PXIe-4143 | Tcal ± 5 °C                                                 | Tcal ± 5 °C    | Tcal ± 1 °C    | 0 °C to 55 °C                                             |
| 10 µA  | 100 pA                                | 10 pA        | 0.1% + 5.0 nA                                               | 0.03% + 1.6 nA | 0.03% + 400 pA | 0.002% + 10 pA                                            |
| 100 µA | 1 nA                                  | 100 pA       | 0.1% + 50 nA                                                | 0.03% + 16 nA  | 0.03% + 4.0 nA | 0.002% + 100 pA                                           |
| 1 mA   | 10 nA                                 | 1 nA         | 0.1% + 0.5 nA                                               | 0.03% + 160 nA | 0.03% + 40 nA  | 0.002% + 1.0 nA                                           |
| 10 mA  | 100 nA                                | 10 nA        | 0.1% + 5.0 µA                                               | 0.03% + 1.6 µA | 0.03% + 400 nA | 0.002% + 10 nA                                            |
| 150 mA | 1.5 µA                                | 150 nA       | 0.1% + 75 µA                                                | 0.03% + 24 µA  | 0.03% + 6.0 µA | 0.002% + 150 nA                                           |


NI PXIe-4143 Output Resistance Programming Accuracy/Resolution\*

| Current Limit Range | Programmable Resistance Range | Resolution | 1 Year Accuracy (23 °C ± 5 °C)<br>± (% of Resistance Setting) |
|---------------------|-------------------------------|------------|---------------------------------------------------------------|
|                     |                               |            | Tcal ± 5 °C                                                   |
| 10 µA               | ± 100 kΩ                      | 2 Ω        | 0.04% + 1.0 mΩ                                                |
| 100 µA              | ± 10 kΩ                       | 200 mΩ     | 0.04% + 110 mΩ                                                |
| 1 mA                | ± 1 kΩ                        | 20 mΩ      | 0.04% + 20 mΩ                                                 |
| 10 mA               | ± 100 Ω                       | 2 mΩ       | 0.04% + 11 mΩ                                                 |
| 150 mA              | ± 6.66 Ω                      | 120 μΩ     | 0.04% + 10 mΩ                                                 |

SMU Resolution/Noise vs. Measure Speed, typical

Figure 2 illustrates noise and resolution as a function of measurement aperture for the NI PXIe-4142/4143.

Figure 2. Noise and Resolution vs. Measurement Aperture, typical

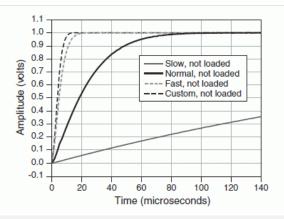


To derive a resolution in absolute units from Figure 2, complete the following steps:

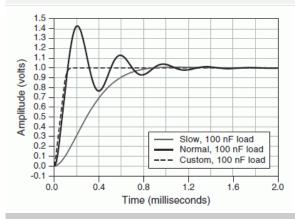
1. Select a voltage or current range.

2. For a given aperture time, find the corresponding resolution.

3. To convert resolution from ppm of range to absolute units, multiply resolution in ppm of range by the selected range.


For example, the NI PXIe-4142 has a resolution of 1,000 ppm when set to a 100 s aperture time. In the 24 V range, resolution can be calculated by multiplying 24 V by 1,000 ppm, as shown in the following example:

24V \* 1,000 ppm = 24 V \* 1,000 \* 1 10–6 = 24 mV


Likewise, in the 150 mA range, resolution can be calculated by multiplying 150 mA by 1,000 ppm, as shown in the following example:

| Additional Specifications                                                       |                                                                                                                     |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Settling time, typical                                                          | <100 $\mu s$ to settle to 0.1% of voltage step, fast transient response                                             |
| Fransient response, typical                                                     | <100 $\mu s$ to recover within ±20 mV after a load current change from 10% to 90% of range, fast transient response |
| Videband source noise, typical                                                  | 2 mV RMS (20 Hz to 20 MHz bandwidth), normal transient response                                                     |
| Cable guard output impedance, typical                                           | 10 κΩ                                                                                                               |
| Remote sense                                                                    |                                                                                                                     |
| Voltage                                                                         | Add 0.1% of LO lead drop to voltage accuracy specification                                                          |
| Current                                                                         | Add 0.03% of range per volt of total HI and LO lead drop to current accuracy specification                          |
| Maximum lead drop                                                               | Up to 1 V drop per lead                                                                                             |
| oad regulation                                                                  |                                                                                                                     |
| Voltage                                                                         | 10 $\mu V$ at connector pins per mA of output load when using local sense                                           |
| Current                                                                         | 20 pA + 1 ppm of range per volt of output change when using local sense                                             |
| solation voltage, characteristic                                                |                                                                                                                     |
| Channel-to-earth ground <sup>7</sup> .                                          | 60 VDC, CAT I, verified by dielectric withstand test, 5 s, continuous                                               |
| bsolute maximum voltage between any terminal and LO                             | 30 VDC, continuous                                                                                                  |
| The following two figures illustrate the effect of the transient response setti | ng on the step response of the NI PXIe-4142/4143 for different loads.                                               |

1 mA Range No Load Step Response, typical



1 mA Range, 100 nF Load Step Response, typical `



| Suppleme | ntal Spec | ifications |
|----------|-----------|------------|
|----------|-----------|------------|

| Maximum Measurement Speed    |                                                                                      |
|------------------------------|--------------------------------------------------------------------------------------|
| Available sample rates       | 600 kS/s / N, where N = 1, 2, 3, 2 <sup>20</sup>                                     |
| Sample rate accuracy         | ±50 ppm                                                                              |
| Maximum measure rate to host | 600,000 S/s per channel, continuous                                                  |
| Maximum source update rate   | 100,000 updates/s                                                                    |
| Trigger in to source delay   | 5 µs                                                                                 |
| Trigger in to source jitter  | 1.7 µs                                                                               |
| Trigger in to measure jitter | 1.7 µs                                                                               |
| Triggers                     |                                                                                      |
| Input triggers               |                                                                                      |
| Types                        | Start, Source, Sequence Advance, Measure                                             |
| Sources                      | PXI trigger lines 0–7                                                                |
| Polarity                     | Configurable                                                                         |
| Minimum pulse width          | 100 ns                                                                               |
| Destinations                 | PXI trigger lines 0–7                                                                |
| Polarity                     | Active high (not configurable)                                                       |
| Pulse width                  | >200 ns                                                                              |
| Output triggers (Events)     |                                                                                      |
| Types                        | Source Complete, Sequence Iteration Complete, Sequence Engine Done, Measure Complete |
| Destinations                 | PXI trigger lines 0–7                                                                |
| Polarity                     | Configurable                                                                         |
| Pulse width                  | Configurable between 250 ns and 1.6 µs                                               |

Figure 5 illustrates the programming flow in NI-DCPower using Sequence source mode with automatic measurements. For more information about programming the NI PXIe-4142/4143, refer to the NI DC Power Supplies and SMUs Help.

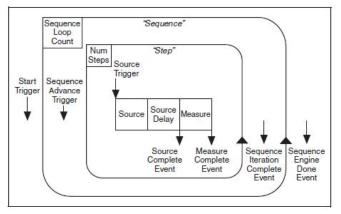



Figure 5. NI-DCPower Programming Flow

| Additional Information           |                                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Recommended calibration interval | One year                                                                                                                                            |
| Physical Characteristics         |                                                                                                                                                     |
| Dimensions                       | 3U, one-slot,<br>PXIe/cPCIe module;<br>2.0 cm 13.0 cm 21.6 cm<br>(0.8 in.5.1 in.8.5 in.)                                                            |
| Weight                           | 412 g (14.53 oz)                                                                                                                                    |
| Front panel connectors           | 25-position D-Sub, male                                                                                                                             |
| Environment                      |                                                                                                                                                     |
| Maximum altitude                 | 2,000 m (at 25 °C ambient temperature)                                                                                                              |
| Pollution degree                 | 2                                                                                                                                                   |
| Indoor use only.                 |                                                                                                                                                     |
| Operating Environment            |                                                                                                                                                     |
| Ambient temperature range        | 0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)                                                                          |
| Relative humidity range          | 10% to 70%, noncondensing; derate 1.3% per °C above 40 °C (Tested in accordance with IEC 60068-2-56.)                                               |
| Storage Environment              |                                                                                                                                                     |
| Ambient temperature range        | -40 °C to 70 °C (Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)                                                                        |
| Relative humidity range          | 5% to 95%, noncondensing (Tested in accordance with IEC-60068-2-56.)                                                                                |
| Shock and Vibration              |                                                                                                                                                     |
| Operational shock                | 30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)             |
| Random vibration                 |                                                                                                                                                     |
| Operating                        | 5 Hz to 500 Hz, 0.3 g <sub>rms</sub>                                                                                                                |
| Nonoperating                     | 5 Hz to 500 Hz, 2.4 grms (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.) |
| Compliance and Cortifications    |                                                                                                                                                     |

# **Compliance and Certifications**

# Safety Standards

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

# IEC 61010-1, EN 61010-1

• UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

# Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

🔥 Ca

 $\mathbb{N}$ 

Caution When operating this product, use shielded cables and accessories.

Note For EMC declarations and certifications, refer to the Online Product Certification section.

## CE Compliance (E

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

#### **Online Product Certification**

To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

#### **Environmental Management**

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complex, as well as other environmental information not included in this document.

EU Customers At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National

## Waste Electrical and Electronic Equipment (WEEE)



# Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit ni.com/environment/weee.htm.

# 电子信息产品污染控制管理办法 (中国 RoHS)



中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合規性信息, 请登录 ni.com/environment/rohs\_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs\_china.)

©2012 National Instruments. All rights reserved. CompactRIO, FieldPoint, LabVIEW, National Instruments, NI, ni.com, NI TestStand, and SourceAdapt are trademarks of National Instruments. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments

My Profile | RSS | Privacy | Legal | Contact NI © 2014 National Instruments Corporation. All rights reserved.