PRELIMINARY DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUITS μ PC2757TB, μ PC2758TB

SILICON MMIC 1st FREQUENCY DOWNCONVERTER FOR CELLULAR/CORDLESS TELEPHONE

DESCRIPTION

The μ PC2757TB and μ PC2758TB are silicon monolithic integrated circuit designed as 1st frequency downconverter for cellular/cordless telephone receiver stage. The ICs consist of mixer and local amplifier. The μ PC2757TB features low current consumption and the μ PC2758TB features improved intermodulation. From these two version, you can chose either IC corresponding to your system design. These TB suffix ICs which are smaller package than conventional T suffix ICs contribute to reduce your system size.

The μPC2757TB and μPC2758TB are manufactured using NEC's 20 GHz fr NESAT™||| silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability

FEATURES

· Wideband operation

: frein = 0.1 GHz to 2.0 GHz, firin = 20 MHz to 300 MHz

High-density surface mounting : 6-pin super mini mold package Low current consumption

: Icc = 5.6 mAτγρ. @ μPC2757TB

Icc = 11 mATYP. @ μ PC2758TB

Supply voltage

: Vcc = 2.7 to 3.3 V

Minimized carrier leakage

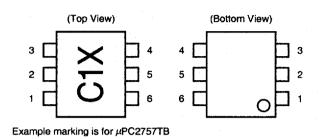
: Due to double balanced mixer

Built-in power save function

APPLICATION

- Cellular/cordless telephone up to 2.0 GHz MAX (eg GSM, PDC800M, PDC1.5G and so on): μPC2758TB
- Cellular/cordless telephone up to 2.0 GHz MAX (eg CT1, CT2 and so on): μPC2757TB

ORDERING INFORMATION


Part Number	Markings	Product Type	PACKAGE	Supplying Form
μPC2757TB-E3	C1X	Low current consumption	6-pin	Embossed tape 8 mm wide. Pin 1, 2, 3 face to tape perforation side.
μPC2758TB-E3	C1Y	High OIP3	super minimold	QTY 3kp/Reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μPC2757TB, μPC2758TB)

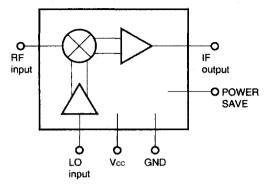
Caution Electro-static sensitive devices

The information in this document is subject to change without notice.

PIN CONNECTIONS

Pin NO.	Pin name
1	RF in
2	GND
3	LOin
4	PS
5	Vcc
6	lFout

PRODUCT LINE-UP (Ta = +25 °C, Vcc = 3.0 V, ZL = Zs = 50 Ω)


Part No.	No RF Icc (mA)	900 MHz SSB · NF (dB)	1.5 GHz SSB · NF (dB)	1.9 GHz SSB · NF (dB)	900 MHz CG (dB)	1.5 GHz CG (dB)	1.9 GHz CG (dB)	900 MHz IIP ₃ (dBm)	1.5 GHz IIPs (dBm)	1.9 GHz IIPs (dBm)
μPC2757T				40	4.5	4.5		4.	4.	40
μPC2757TB	5.6	10	10	13	15	15	13	-14	-14	-12
μ PC2758 T			46	40		40		40		
μPC2758TB	11	9	10	13	19	18	17	-13	-12	-11
μPC 8 112T			44	44	1.5	40	40	40		
μPC8112TB	8.5	9	11	11	15	13	13	-10	-9	7.

Part No.	900 MHz Posal (dBm)	1.5 GHz Posat (dBm)	1.9 GHz Posat (dBm)	900 MHz RF ₁₀ (dB)	1.5 GHz RF ₁ 6 (dB)	1.9 GHz RF₀ (dB)	IF Output Configuration	Packages
μPC2757T								6-pin minimold
μPC2757TB	-3	-	-8				Emitter follower	6-pin super minimold
μPC2758T			_				Elimet lollower	6-pin minimold
μPC2758TB	+1	. —	-4					6-pin super minimold
μPC8112T	0.5			20	,,,,,	er.	Onen enllester	6-pin minimold
μPC8112TB	-2.5	-3	-3	-80	~57	-55	Open collector	6-pin super minimold

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet.

Notice μ PC2757 and μ PC2758's IIP3 are calculated with Δ IM3 = 3 which is the same IM3 inclination as μ PC8112. On the other hand, OIP3 of Standard characteristics in page 4 is cross point IP.

INTERNAL BLOCK DIAGRAM (µPC2757TB, µPC2758TB in common)

SYSTEM APPLICATION EXAMPLE

DIGITAL CELLULAR TELEPHONE

These examples show only IC's location on the system use schematically, do not present or recommend the actual application circuit in detail.

To know the associated products, please refer to each latest data sheet.

PIN EXPLANATION (Both μ PC2757TB, 2758TB)

Pin No.	Pin Name	Applied Voltage V	Pin Voltage V****	Function and Application	Internal Equivalent Circuit
1	RF in)	1.2	This pin is RF input for mixer designed as double balance type. This circuit contributes to suppress spurious signal with minimum LO and bias power consumption. Also this symmetrical circuit can keep specified performance insensitive to process-condition distribution.	From LO
2	GND	GND	<u>-</u>	This pin is ground of IC. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. (Track length should be kept as short as possible.)	<u>-</u>
	LO in	- -	1.3	This pin is LO input for local buffer designed as differential amplifier. Recommendable input level is –15 to –0 dBm. Also this symmetrical circuit can keep specified performance insensitive to process-condition distribution.	V∞ Mixer → Mixer
4	PS	Vcc/GND	-	This pin is for power-save function. This pin can control ON/OFF operation with bias as follows;	Vcc
5	Vcc	2.7 - 3.3		Supply voltage 3.0 ±0.3 V for operation. Must be connected bypass capacitor. (e.g. 1 000 pF) to minimize ground impedance.	-
6	IF out	<u>-</u>	1.7	This pin is output from IF buffer amplifier designed as single-ended push-pull type. This pin is assigned for emitter follower output with low-impedance. In the case of connecting to high-impedance stage, please attach external matching circuit.	V ∞ S

Note Each pin voltage is measured with Vcc = 3.0 V

ABSOLUTE MAXIMUM RATINGS

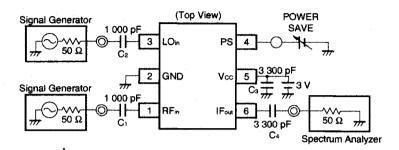
Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25 °C	5.5	٧
PS Pin Voltage	VPS	TA = +25 °C	5.5	٧
Power Dissipation of Package Allowance	Po	Mounted on 50 × 50 × 1.6 mm double sided copper clad epoxy glass board at TA = +85 °C	200	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

RECOMMENDED OPERATING RANGE

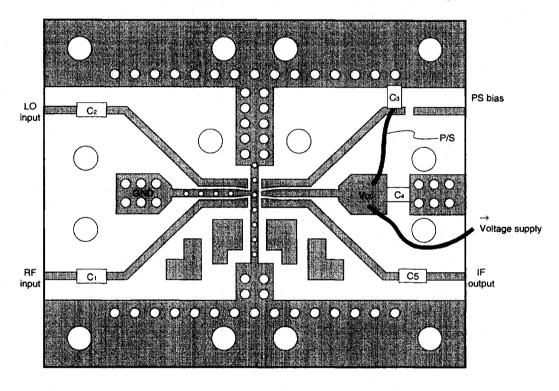
Parameters	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.7	3.0	3.3	٧
Operating Ambient Temperature	Ta	-40	+25	+85	°C
LO Input Level	PLOin	-15	-10	0	dBm

ELECTRICAL CHARACTERISTICS (Ta = +25 °C, Vcc = Vps = 3.0 V, PLoin = -10 dBm, ZL = Zs = 50 Ω)

B	0	Odition	μ	PC2757	гв	μ	PC2758	гв	l I a la
Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	Unit
Circuit Current	lcc	No input signal	3.7	5.6	7.7	6.6	11	14.8	dB
RF Frequency Response	far	CG ≥ (CG1 -3 dB) f _{iFout} = 130 MHz constant	0.1		2.0	0.1		2.0	GHz
IF Frequency Response	fie	CG ≥ (CG1 –3 dB) f _{RFin} = 0.8 GHz constant	20		300	20		300	MHz
Conversion Gain 1	CG1	fren = 0.8 GHz, firou = 130 MHz Pren = -40 dBm, Upper local	12	15	18	16	19	22	dB
Conversion Gain 2	CG2	fren = 2.0 GHz, firou = 250 MHz Pren = -40 dBm, Lower local	10	13	16	14	17	20	dB
Single Sideband Noise Figure 1	SSB NF1	frin = 0.8 GHz, firout = 130 MHz, Upper local		10	13		9	12	dB
Single Sideband Noise Figure 2	SSB NF2	frein = 2.0 GHz, frout = 250 MHz, Lower local		13	16		13	15	dΒ
Maximum IF Output Level 1	Po(sat) 1	frem = 0.8 GHz, first = 130 MHz Prem = -10 dBm, Upper local	-11	-3		7	+1		dBm
Maximum IF Output Level 2	Po(sat) 2	fren = 2.0 GHz, freot = 250 MHz Prein = -10 dBm, Lower local	-11	-8		-7	-4		dBm


STANDARD CHARACTERISTICS FOR REFERENCE

(Unless otherwise specified: $T_A = +25$ °C, $V_{CC} = V_{PS} = 3.0$ V, $P_{Loin} = -10$ dBm, $Z_L = Z_S = 50$ Ω)


) 	Combal	Connelia	Referen		
Parameters	Symbol	Conditions	μPC2757TB	μPC2758TB	Unit
Output 3rd intercept point	OIP ₃	farin = 0.8 to 2.0 GHz, firout = 0.1 GHz, Cross point IP	+5	+11	dBm
LO leakage at RF pin	LOr	fLoin = 0.8 to 2.0 GHz	-35	-30	dBm
LO leakage at IF pin	LOx	f.com = 0.8 to 2.0 GHz	-23	-15	dBm
Power-saving current	les	Vps = 0.5 V	0.1	0.1	μΑ

TEST CIRCUIT

μPC2757TB, μPC2758TB

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

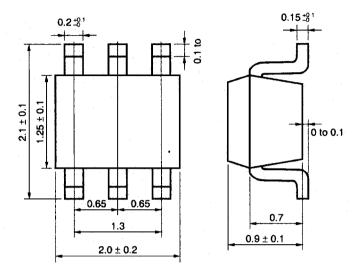
Component List

No.	Value
C1 to 2	1 000 pF
C3 to 5	3 300 pF

Notes 1. $35 \times 42 \times 0.4$ mm double sided copper clad polyimide board.

Back side: GND pattern
 Solder plated on pattern

4. °O: Through holes


APPLICATION

This IC is guaranteed on the test circuit constructed with 50 Ω equipment and transmission line.

This IC, however, does not have 50 Ω input/output impedance, but electrical characteristics such as conversion gain and intermodulation distortion are described herein on these conditions without impedance matching. So, you should understand that conversion gain and intermodulation distortion at input level will vary when you improve VS of RF input with external circuit (50 Ω termination or impedance matching.)

PACKAGE DIMENSIONS

6 pin super minimold (Unit: mm)

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electrostatic sensitive devices.
- (2) Form a ground pattern as wide as possible to keep the minimum ground impedance (to prevent undesired oscillation).
- (3) Keep the track length of the ground pins as short as possible.
- (4) Connect a bypass capacitor (e.g. 1 000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

μPC2756TB

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Count: 3, Exposure limit***: None	IR35-00-3
VPS	Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Count: 3, Exposure limit***: None	VP15-00-3
Wave Soldering	Soldering bath temperature: 260 °C or below Time: 10 seconds or less Count: 1, Exposure limit***: None	WS60-00-1
Partial Heating	Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Exposure limit** None	÷

Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5