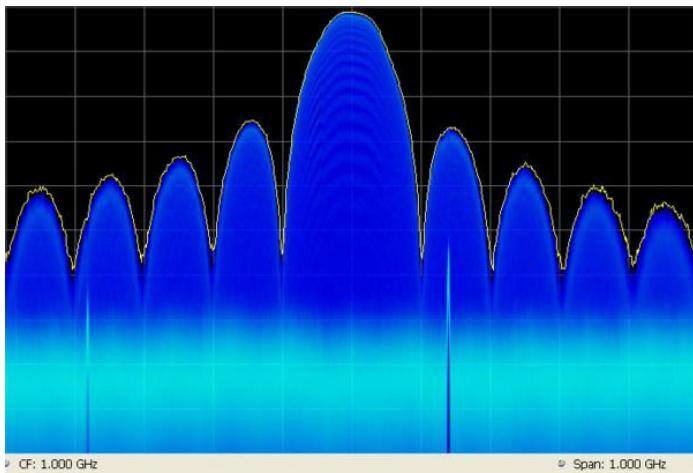
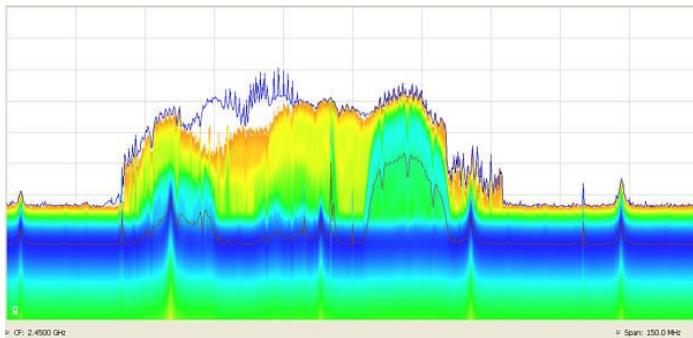


Spectrum Analyzers Datasheet

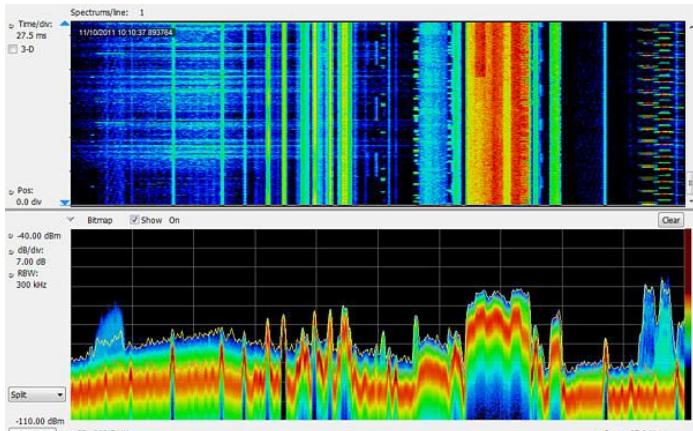
SPECMON Series



Discover, capture and analyze elusive events in the field faster than ever before with the SPECMON Spectrum Analyzer. With the patented swept DPX technology, advanced triggering, and wide capture bandwidth, SPECMON can discover and capture events as short as 2.7 μ s with 100% probability of intercept, helping you to find interferers fast.


Key features

- Leading real time technologies help to troubleshoot the toughest transient interferences in the field
 - Unique Swept DPX™ enables the customer to "Real-Time Scan" the whole 3/6.2/26.5 GHz frequency range for transient interference discovery
 - Up to 165 MHz ultra-wide real-time BW for "close-in" signal discovery, capture and real-time demodulation
 - Unmatched ability to discover and capture signals with as short as 2.7 μ s duration with 100% Probability of Intercept (POI)
 - Exceptional DPX Density Trigger/Trigger on This™, Frequency Mask Trigger and other advanced triggering capabilities provide 100% probability of intercept for signals as short as 2.7 μ s in the frequency domain and 12 ns in the time domain
 - Save hours of post-capture review time with optional advanced triggering capabilities such as Save-on-Trigger, which intelligently saves events of interest automatically
- Integrated solution design reduces total cost of ownership with lower initial purchase cost and annual maintenance cost
 - Both manual and automatic drive test are supported by built-in mapping software. Commercial off-the-shelf 3rd party GPS receiver supported via USB or Bluetooth connection
 - Field pulse analysis (for example, airport radar) is easier than ever with automated Pulse Analysis suite
 - Save up to 12 years of gap-free DPX Spectrogram/Real-Time Waterfall Traces (Opt. 53) or up to 5.37 seconds of IQ data at full 165 MHz BW (Opt. B16x) with extra-large real-time memory, eliminating the need for an external data recorder in many cases
 - Full 165 MHz bandwidth real-time IQ data can be streamed to external, data recording devices (Opt. 65) for comprehensive post analysis
 - Instrumentation needs for frequency-domain, modulation-domain and time-domain analysis are simplified by native 3-in-1 multiple-domain correlation and analysis capability
 - Modulation analysis for 20+ general purpose analog and digital signal types, including AM/FM demodulation, APCO P25 transmitter and flexible WLAN signal analysis
 - Built-in versatile field measurement items including Field Strength, Signal Strength, EMI test, Channel Power, ACPR, OBW, and Spurious Search
 - Ruggedness and data security achieved with standard field-removable solid-state drive
- Open data format improves asset utilization through compatibility with industry-standard products
 - Captured IQ data can be saved into Matlab, CSV or other formats for use with third-party software analysis tools
 - RSA MAP supports MapInfo format and scanned version maps, also supports exporting to popular Google Earth and MapInfo map format for post analysis
 - Open interface for integration into customer applications
- Ease-of-use platform improves field-test efficiency and lowers system training cost
 - 10.4 inch ultra-bright touchscreen display
 - Windows 7 Ultimate (64-bit) with support to Microsoft language localization

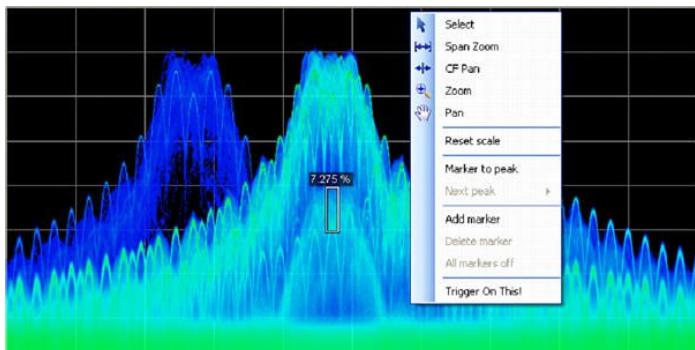

Integrated real-time solutions

Advanced Triggers and Swept DPX re-invents the way swept spectrum analysis is done. The DPX engine collects hundreds of thousands of spectrums per second over a 165 MHz bandwidth. Users can sweep the DPX across the full input range of the SPECMONB Series, up to 26.5 GHz. In the time a traditional spectrum analyzer has captured one spectrum, the SPECMONB Series has captured orders of magnitude more spectrums. This new level of performance reduces the chance of missing time-interleaved and transient signals during broadband searches.

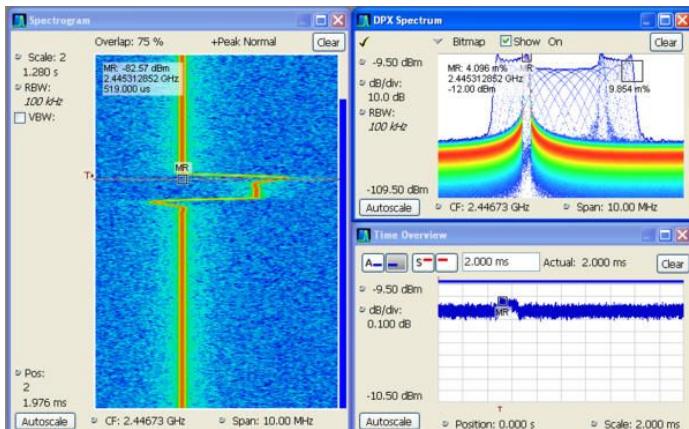
Advanced Triggers, Swept DPX, and Zero Span provides superior swept spectrum analysis for transient signals. Here, a 150 MHz swath of spectrum is swept across the ISM band. Multiple WLAN signals are seen, and narrow signals seen in the blue peak-hold trace are Bluetooth access probes. Multiple interfering signals are seen below the analyzers noise level in the multi-color DPX display.

DPX Spectrograms provide gap-free spectral monitoring for up to 12 years at a time. 60,000 traces can be recorded and reviewed, with resolution per line adjustable from 5.12 μ s to 6400 s.

Discover


The patented DPX® spectrum processing engine brings live analysis of transient events to spectrum analyzers. Performing up to 390,625 frequency transforms per second, transients of a minimum event duration of 2.7 μ s in length are displayed in the frequency domain. This is orders of magnitude faster than swept analysis techniques. Events can be color coded by rate of occurrence onto a bitmapped display, providing unparalleled insight into transient signal behavior. The DPX spectrum processor can be swept over the entire frequency range of the instrument, enabling broadband transient capture previously unavailable in any spectrum analyzer. In applications that require only spectral information, DPX spectrograms provides gap-free spectral recording, replay, and analysis of up to 60,000 spectral traces. Spectrum recording resolution is variable from 5.12 μ s to 6400 s per line.

Trigger


Tektronix has a long history of innovative triggering capability, and the SPECMONB Series spectrum analyzers lead the industry in triggered signal analysis. The SPECMONB Series provides unique triggers essential for troubleshooting modern digitally implemented RF systems. Includes time-qualified power, runt, density, frequency, and frequency mask triggers.

Time qualification can be applied to any internal trigger source, enabling capture of 'the short pulse' or 'the long pulse' in a pulse train, or, when applied to the frequency mask trigger, only triggering when a frequency domain event lasts for a specified time. Runt triggers capture troublesome infrequent pulses that either turn on or turn off to an incorrect level, greatly reducing time to fault.

DPX Density™ trigger works on the measured frequency of occurrence or density of the DPX display. The unique Trigger On This™ function allows the user to simply point at the signal of interest on the DPX display, and a trigger level is automatically set to trigger slightly below the measured density level. You can capture low-level signals in the presence of high-level signals at the click of a button.

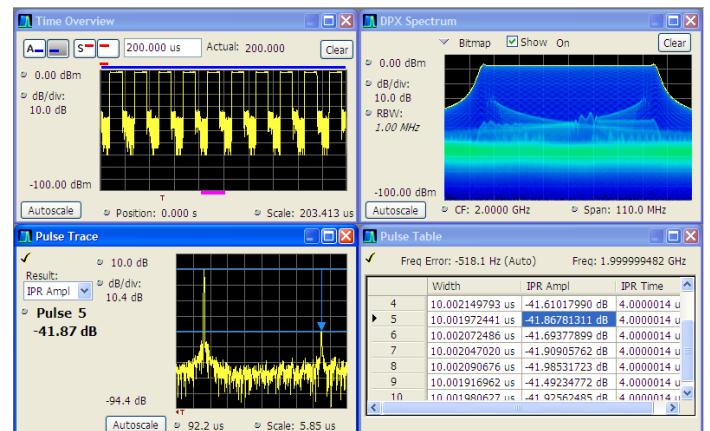
Revolutionary DPX® spectrum display reveals transient signal behavior that helps you discover instability, glitches, and interference. Here, three distinct signals can be seen. Two high-level signals of different frequency-of-occurrence are seen in light and dark blue, and a third signal beneath the center signal can also be discerned. The DPX Density™ trigger allows the user to acquire signals for analysis only when this third signal is present. Trigger On This™ has been activated, and a density measurement box is automatically opened, measuring a signal density 7.275%. Any signal density greater than the measured value will cause a trigger event.

Trigger and Capture: The DPX Density™ Trigger monitors for changes in the frequency domain, and captures any violations into memory. The spectrogram display (left panel) shows frequency and amplitude changing over time. By selecting the point in time in the spectrogram where the spectrum violation triggered the DPX Density™ Trigger, the frequency domain view (right panel) automatically updates to show the detailed spectrum view at that precise moment in time.

The Frequency mask trigger (FMT) is easily configured to monitor all changes in frequency occupancy within the acquisition bandwidth.

A Power Trigger working in the time domain can be armed to monitor for a user-set power threshold. Resolution bandwidths may be used with the power trigger for band limiting and noise reduction. Two external triggers are available for synchronization to test system events.

Capture


Capture once - make multiple measurements without recapturing. All signals in an acquisition bandwidth are recorded into the SPECMONB Series deep memory. Record lengths vary depending upon the selected acquisition bandwidth - up to 4.7 seconds at 165 MHz. Real-time capture of small signals in the presence of large signals is enabled with >70 dB SFDR in all acquisition bandwidths, even up to 165 MHz (Opt. B16x). Acquisitions of any length can be stored in MATLAB™ Level 5 format for offline analysis.

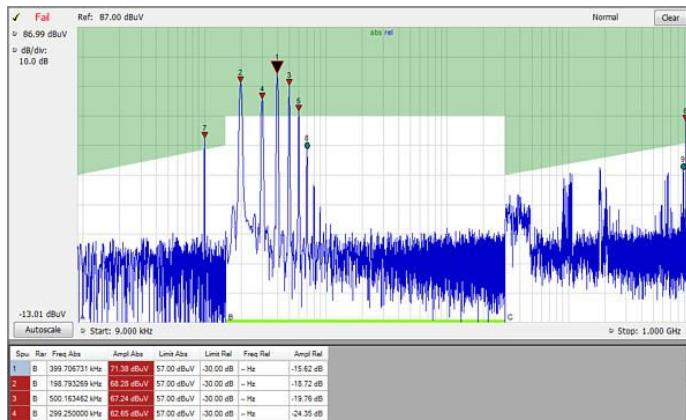
Most spectrum analyzers in the market use narrowband tunable band pass filters, often YIG tuned filters (YTF) to serve as a preselector. These filters provide image rejection and improve spurious performance in swept applications by limiting the number of signals present at the first mixing stage. YTF's are narrow band devices by nature and are usually limited to bandwidths less than 50 MHz. These analyzers bypass the input filter when performing wideband analysis, leaving them susceptible to image responses when operating in modes where wideband analysis is required such as for real time signal analysis.

Unlike spectrum analyzers with YTF's, Tektronix Real Time Signal Analyzers use a wideband image-free architecture guaranteeing that signals at frequencies outside of the band to which the instrument is tuned don't create spurious or image responses. This image-free response is achieved with a series of input filters designed such that all image responses are suppressed. The input filters are overlapped by greater than the widest acquisition bandwidth, ensuring that full-bandwidth acquisitions are always available. This series of filters serves the purpose of the preselector used by other spectrum analyzers, but has the benefit of always being on while still providing the image-free response in all instrument bandwidth settings and at all frequencies.

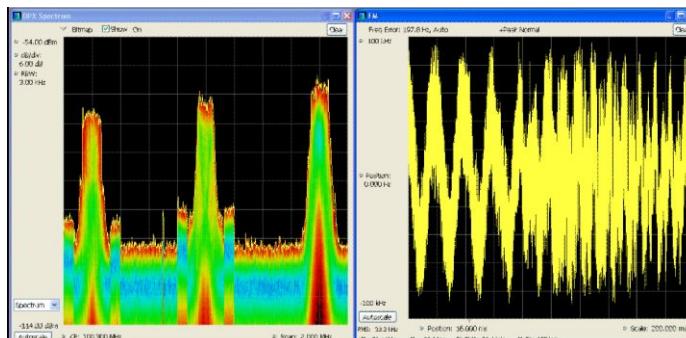
Analyze

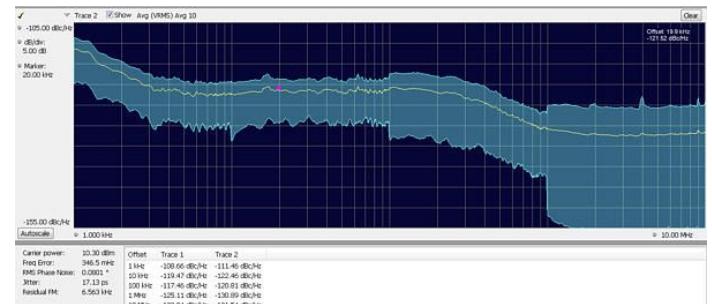
The SPECMONB Series offers analysis capabilities that advance productivity for engineers working on components or in RF system design, integration, and performance verification, or operations engineers working in networks, or spectrum management. In addition to spectrum analysis, spectrograms display both frequency and amplitude changes over time. Time-correlated measurements can be made across the frequency, phase, amplitude, and modulation domains. This is ideal for signal analysis that includes frequency hopping, pulse characteristics, modulation switching, settling time, bandwidth changes, and intermittent signals.

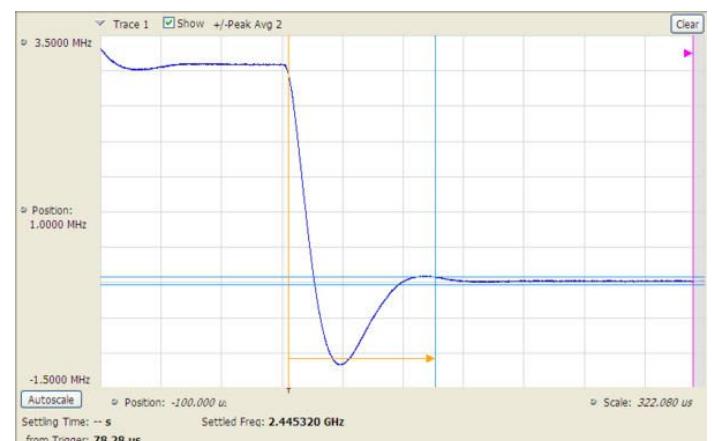
Advanced signal analysis package offers over 20 automated pulse parameter calculations on every pulse. Easily validate designs with measurements of peak power, pulse width rise time, ripple, droop, overshoot, and pulse-to-pulse phase. Gain insight into linear FM chirp quality with measurements such as Impulse Response and Phase Error. A pulse train (upper left) is seen with automatic calculation of pulse width and impulse response (lower right). A detailed view of the Impulse Response is seen in the lower left, and a DPX® display monitors the spectrum on the upper right.

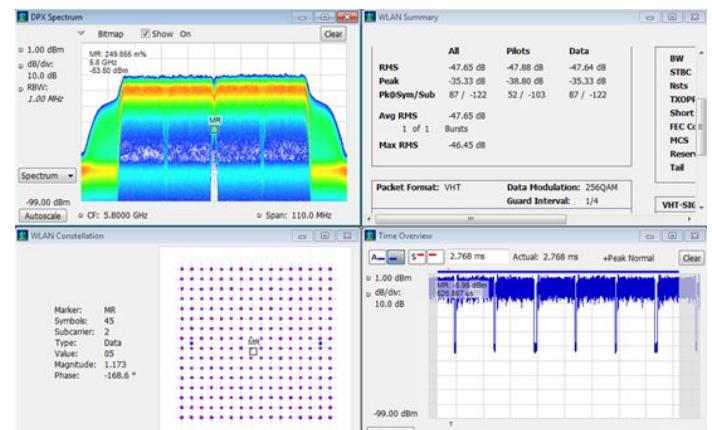

The measurement capabilities of the SPECMONB Series and available options and software packages are summarized next.

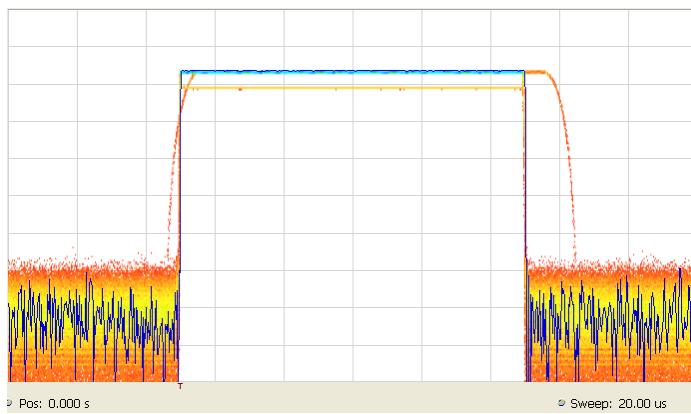
Measurement functions

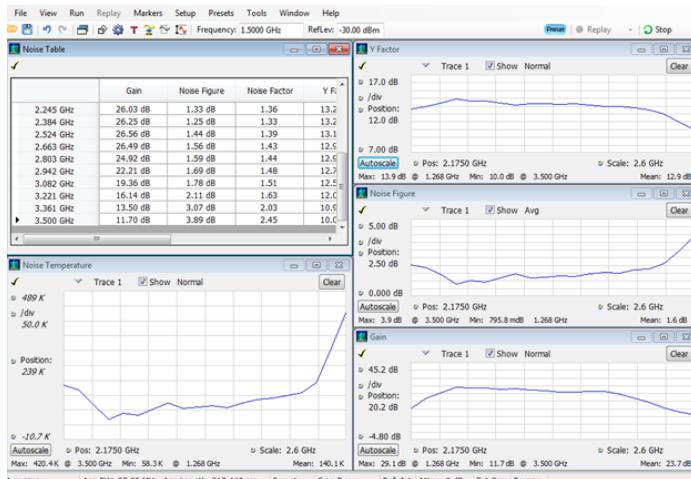

Measurements	Description	Measurements	Description
Spectrum analyzer measurements	Channel power, Adjacent channel power, Multicarrier adjacent channel power/leakage ratio, Spectrum emissions mask, Occupied bandwidth, xdB down, dBm/Hz marker, dBc/Hz marker	WLAN 802.11a/b/g/j/p measurement application (Opt. 23)	All of the RF transmitter measurements as defined in the IEEE standard, as well as a wide range of additional measurements including Carrier Frequency error, Symbol Timing error, Average/peak burst power, IQ Origin Offset, RMS/Peak EVM, and analysis displays, such as EVM and Phase/Magnitude Error vs. time/frequency or vs. symbols/ subcarriers, as well as packet header decoded information and symbol table.
Time domain and statistical measurements	RF IQ vs Time, Power vs Time, Frequency vs Time, Phase vs Time, CCDF, Peak-to-Average Ratio	WLAN 802.11n measurement application (Opt. 24)	Option 24 requires option 23.
Spur search measurement	Up to 20 frequency ranges, user-selected detectors (Peak, Average, QP), filters (RBW, CISPR, MIL), and VBW in each range. Linear or log frequency scale. Measurements and violations in absolute power or relative to a carrier. Up to 999 violations identified in tabular form for export in .CSV format	WLAN 802.11ac measurement application (Opt. 25)	Option 25 requires option 24.
Analog modulation analysis measurement functions (standard)	% amplitude modulation (+, -, total) frequency modulation (\pm Peak, +Peak, -Peak, RMS, Peak-Peak/2, frequency error) phase modulation (\pm Peak, RMS, +Peak, -Peak)	APCO P25 compliance testing and analysis application (Opt. 26)	Complete set of push-button TIA-102 standard-based transmitter measurements with pass/fail results including ACPR, transmitter power and encoder attack times, transmitter throughput delay, frequency deviation, modulation fidelity, symbol rate accuracy, and transient frequency behavior, as well as HCPM transmitter logical channel peak ACPR, off slot power, power envelope, and time alignment.
AM/FM/PM modulation and audio measurements (Opt. 10)	carrier power, frequency error, modulation frequency, modulation parameters (\pm Peak, Peak-Peak/2, RMS), SINAD, modulation distortion, S/N, THD, TNHD	Noise Figure and Gain Measurements (Opt. 14)	Measurement displays of noise figure, gain, Y-factor, noise temperature, plus tabular results. Single-frequency metering and swept-trace results are available. Support for industry-standard noise sources. Measures amplifiers and other non-frequency converting devices plus fixed local-oscillator up and down converters. Performs mask testing to user-defined limits. Built in uncertainty calculator.
Phase noise and jitter measurements (Opt. 11)	10 Hz to 1 GHz frequency offset range, log frequency scale traces - 2: \pm Peak trace, average trace, trace smoothing, and averaging	Mapping and Signal Strength	Both manual and automatic drive test are supported by built-in mapping software. Commercial off-the-shelf third party GPS receiver supported via USB or Bluetooth connection. Supports MapInfo format and scanned version maps, also supports exporting to popular Google Earth and MapInfo map format for post analysis. Signal strength measurement provides both a visual indicator and audible tone of signal strength.
Settling Time (Frequency and Phase) (Opt. 12)	Measured frequency, Settling time from last settled frequency, Settling time from last settled phase, Settling time from trigger. Automatic or manual reference frequency selection. User-adjustable measurement bandwidth, averaging, and smoothing. Pass/Fail mask testing with 3 user-settable zones	DPX density measurement	Measures % signal density at any location on the DPX spectrum display and triggers on specified signal density
Advanced pulse measurements suite (standard)	Average on power, Peak power, Average transmitted power, Pulse width, Rise time, Fall time, Repetition interval (seconds), Repetition interval (Hz), Duty factor (%), Duty factor (ratio), Ripple (dB), Ripple (%), Overshoot (dB), Overshoot (%), Droop (dB), Droop (%), Pulse-pulse frequency difference, Pulse-pulse phase difference, RMS frequency error, Max frequency error, RMS phase error, Max phase error, frequency deviation, delta frequency, Phase deviation, Impulse response (dB), Impulse response (time), Time stamp	RSAVu Analysis Software	W-CDMA, HSUPA, HSDPA, GSM/EDGE, CDMA2000 1x, CDMA2000 1xEV-DO, RFID, Phase noise, Jitter, IEEE 802.11 a/b/g/n WLAN, IEEE 802.15.4 OQPSK (Zigbee), Audio analysis
General Purpose Digital Modulation Analysis (Opt. 21)	Error vector magnitude (EVM) (RMS, Peak, EVM vs time), Modulation error ratio (MER), Magnitude error (RMS, Peak, Mag error vs time), Phase error (RMS, Peak, Phase error vs time), Origin offset, Frequency error, Gain imbalance, Quadrature error, Rho, Constellation, Symbol table		
Flexible OFDM Analysis (Opt. 22)	OFDM analysis for WLAN 802.11a/j/g and WiMAX 802.16-2004		


Multiple domain views provide a new level of insight into design problems not possible with conventional analyzers, here, modulation quality and constellation view are combined with the continuous monitoring of the DPX spectrum display.


Spurious Search - Up to 20 noncontiguous frequency regions can be defined, each with their own resolution bandwidth, video bandwidth, detector (peak, average, quasi-peak), and limit ranges. Test results can be exported in .CSV format to external programs, with up to 999 violations reported. Spectrum results are available in linear or log scale.


Audio monitoring and modulation measurements simultaneously can make spectrum management an easier, faster task. Here, the DPX spectrum display shows a live spectrum of the signal of interest and simultaneously provides demodulated audio to the internal instrument loudspeaker. FM deviation measurements are seen in the right side of the display for the same signal.

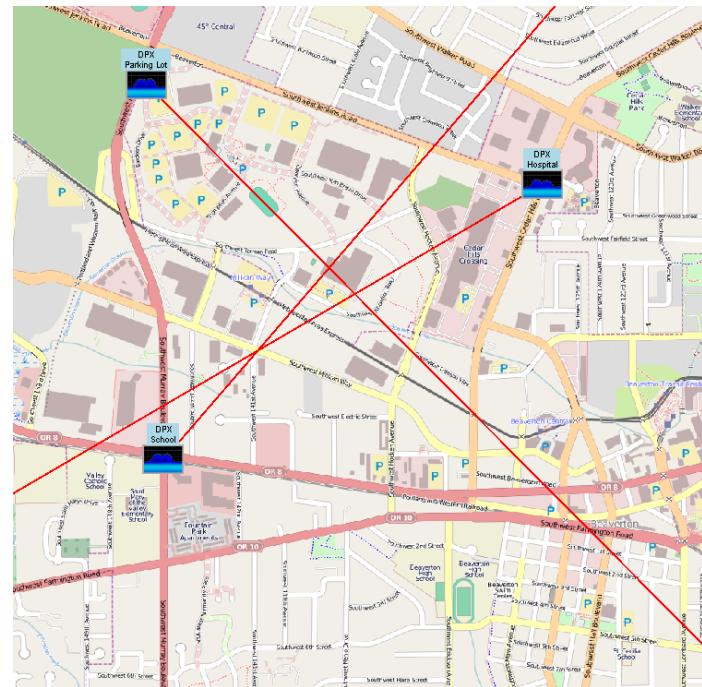

Phase noise and jitter measurements (Opt. 11) on the SPECMONB Series may reduce the cost of your measurements by reducing the need for a dedicated phase noise tester. Outstanding phase noise across the operating range provides margin for many applications. Here, phase noise on a 13 MHz carrier is measured at -119 dBc/Hz at 10 kHz offset. The instrument phase noise of < -134 dBc/Hz at this frequency provides ample measurement margin for the task.


Settling time measurements (Opt. 12) are easy and automated. The user can select measurement bandwidth, tolerance bands, reference frequency (auto or manual), and establish up to 3 tolerance bands vs. time for Pass/Fail testing. Settling time may be referenced to external or internal trigger, and from the last settled frequency or phase. In the illustration, frequency settling time for a hopped oscillator is measured from an external trigger point from the device under test.

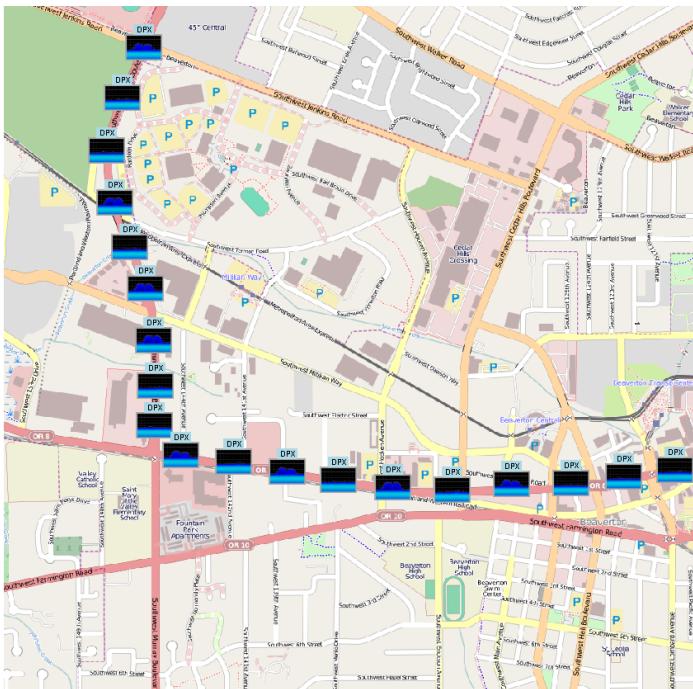
Analysis options for 802.11 standards are available. Here, an 802.11ac 80 MHz signal is analyzed, with displays of constellation, amplitude vs. time, summary of WLAN measurements, and the DPX spectrum of the analyzed signal. The density of the 'shoulders' of the WLAN signal are clearly seen in the DPX display, and a marker has been placed on the suppressed center carrier of the signal. An EVM of -47.65 dB and other signal measurements are seen in the summary panel

DPX Zero-span produces real-time analysis in amplitude, frequency, or phase vs. time. Up to 50,000 waveforms per second are processed. DPX Zero-span ensures that all time-domain anomalies are immediately found, reducing time-to-fault. Here, three distinct pulse shapes are captured in zero-span amplitude vs. time. Two of the three waveforms occur only once in 10,000 pulses, but all are displayed with DPX.

Noise Figure and Gain measurements (Option 14) help you to quickly and easily measure your device using the RTSA and a noise source. This image shows the measurement summary table with graphs of noise temperature, gain, noise figure and Y-factor.


Integrated solution for mapping

SPECMONB Series Real-Time Spectrum Analyzers provide an integrated solution for field interference and coverage problems. The built-in RSA Map lets you use an on-screen map to record the location and value of SPECMONB measurements.


With RSA Map you can do the following:

- Select a measurement and touch the displayed map where you want the measurement to be placed
- Use a GPS receiver (customer supplied) to automatically position measurements at your current location (on maps with geophysical reference information)
- Collect and export measurement data (and position data when using a GPS receiver) to common formats to help analyze measurements (position, value, and direction) and prepare reports to resolve interference problems

RSA Map uses MapInfo format map files (.mif) or Windows bitmap files (.bmp) to indicate location. The .bmp format map files can be either geo-referenced or non-geo-referenced. Saved test results give you complete measurement data along with exporting compatibility to Google Earth (.kmz) and Mapinfo (MIF/MID) formats.

Locate interference with azimuth direction function. It lets you draw a line or an arrow on a mapped measurement to indicate the direction your antenna was pointing when you take a measurement. User label can also be displayed (this example shows real time DPX measurement taken from Hospital, School and Park Lot)

Both manual and automatic drive test measurements are supported. The Repeat measurements function automatically takes measurements at a user-set time or distance interval.

Specifications

Model overview

	SPECMON3B	SPECMON6B	SPECMON26B
Frequency range	1 Hz to 3.0 GHz	1 Hz to 6.2 GHz	1 Hz to 26.5 GHz
Real-time acquisition BW	25 MHz, 40 MHz, 165 MHz		
Minimum Event Duration for 100% POI at 100% amplitude	2.7 μ s at 165 MHz BW 2.8 μ s at 85 MHz BW 3.0 μ s at 40 MHz BW 3.2 μ s at 25 MHz BW		
SFDR (typical)	>75 dBc (25/40 MHz) >73 dBc (85/165 MHz)		
Trigger modes	Free run, Triggered, FastFrame		
Trigger types	Power, Frequency mask, Frequency edge, DPX density, Runt, Time qualified		

Frequency related

Initial center frequency setting accuracy	Within 10^{-7} after 10 minute warm-up
Center frequency setting resolution	0.1 Hz
Frequency marker readout accuracy (RE = Reference frequency error)	$\pm (RE \times MF + 0.001 \times Span + 2)$ Hz (MF = Marker frequency (Hz))
Span accuracy	$\pm 0.3\%$ (auto mode)
Reference frequency	
Initial accuracy at cal	$\pm 1 \times 10^{-7}$ (after 10 minute warm-up)
Aging per day	1×10^{-9} (after 30 days of operation)
First year aging (typical)	7.5×10^{-8} (after 1 year of operation)
Aging per 10 years	3×10^{-7} (after 10 years of operation)
Temperature drift	1×10^{-7} (5° C to 40° C)
Cumulative error (temperature + aging)	4×10^{-7} (within 10 years after calibration, typical)
Reference output level	>0 dBm (internal or external reference selected), +4 dBm, typical
External reference input frequency	Every 1 MHz from 1 to 100 MHz plus 1.2288 MHz, 4.8 MHz, and 19.6608 MHz. External input must be within $\pm 1 \times 10^{-6}$ (Std), $\pm 3 \times 10^{-7}$ (Opt PFR) to stated input
External reference input frequency requirements	Spurious level on input must be < -80 dBc within 100 kHz offset to avoid on-screen spurs
Spurious	< -80 dBc within 100 kHz offset
Input level range	-10 dBm to +6 dBm

Trigger related

Trigger modes	Free run, triggered, FastFrame
Trigger event source	RF input, Trigger 1 (front panel), Trigger 2 (rear panel), Gated, Line
Trigger types	Power, Frequency Mask, Frequency Edge, DPX Density, Runt, Time Qualified
Trigger setting	Trigger position settable from 1 to 99% of total acquisition length
Trigger combinatorial logic	Trigger 1 AND trigger 2 / gate may be defined as a trigger event
Trigger actions	Save acquisition and/or save picture on trigger

Power level trigger

Level range	0 dB to -100 dB from reference level
Accuracy	For trigger levels >30 dB above noise floor, 10% to 90% of signal level
Level \geq -50 dB from reference level	± 0.5 dB
From < -50 dB to -70 dB from reference level	± 1.5 dB
Trigger bandwidth range	At maximum acquisition bandwidth
Standard	4 kHz to 10 MHz + wide open
Opt. B40	4 kHz to 20 MHz + wide open
Opt. B16x	11 kHz to 40 MHz + wide open
Trigger position timing uncertainty	
25 MHz acquisition BW, 10 MHz BW (Std.)	Uncertainty = ± 15 ns
40 MHz acquisition BW, 20 MHz BW (Opt. B40)	Uncertainty = ± 10 ns
165 MHz acquisition BW, 85 MHz BW (Opt. B16x, B85)	Uncertainty = ± 5 ns
Trigger re-arm time, minimum (Fast Frame On)	
10 MHz acquisition BW	≤ 25 μ s
40 MHz acquisition BW (Opt. B40)	≤ 10 μ s
165 MHz acquisition BW (Opt. B16x)	≤ 5 μ s
Minimum event duration	
25 MHz acquisition BW (Std.)	40 ns
40 MHz acquisition BW (Opt. B40)	25 ns
165 MHz acquisition BW (Opt. B16x)	12 ns

External trigger 1

Level range	-2.5 V to +2.5 V
Level setting resolution	0.01 V
Trigger position timing uncertainty	50 Ω input impedance
25 MHz acquisition BW, 25 MHz span (Std.)	Uncertainty = ± 20 ns
40 MHz acquisition BW, 40 MHz span (Opt. B40)	Uncertainty = ± 15 ns
165 MHz acquisition BW, 165 MHz span (Opt. B16x)	Uncertainty = ± 12 ns
Input impedance	Selectable 50 Ω /5 k Ω impedance (nominal)

External trigger 2

Threshold voltage	Fixed, TTL
Input impedance	10 k Ω (nominal)
Trigger state select	High, Low

Trigger output

Voltage	Output current <1 mA
High	>2.0 V
Low	<0.4 V

Acquisition related

A/D converter	100 MS/s, 14 bit (optional 300 MS/s, 14 bit, Opt. B40/B16x)
Acquisition memory size	1 GB (4 GB, opt. 53)
Minimum acquisition length	64 samples
Acquisition length setting resolution	1 sample
Fast frame acquisition mode	>64,000 records can be stored in a single acquisition (for pulse measurements and spectrogram analysis)

Acquisition related

Memory depth (time) and minimum time domain resolution

Acquisition BW	Sample rate (for I and Q)	Record length	Record length (Opt. 53)	Time resolution
165 MHz	200 MS/s	1.34 s	5.37 s	5 ns
85 MHz	200 MS/s	1.34 s	5.37 s	5 ns
80 MHz	100 MS/s	2.68 s	10.74 s	10 ns
40 MHz	50 MS/s	4.77 s	19.09 s	20 ns
25 MHz	50 MS/s	4.77 s	19.09 s	20 ns
20 MHz	25 MS/s	9.54 s	38.18 s	40 ns
10 MHz	12.5 MS/s	19.09 s	76.35 s	80 ns
5 MHz	6.25 MS/s	38.18 s	152.71 s	160 ns
2 MHz	3.125 MS/s	42.9 s	171.8 s	320 ns
1 MHz	1.563 MS/s	85.9 s	343.6 s	640 ns
500 kHz	781.25 kS/s	171.8 s	687.2 s	1.28 μ s
200 kHz	390.625 kS/s	343.6 s	1374.4 s	2.56 μ s
100 kHz	195.313 kS/s	687.2 s	2748.8 s	5.12 μ s
50 kHz	97.656 kS/s	1374.4 s	5497.6 s	10.24 μ s
20 kHz	48.828 kS/s	2748.8 s	10995.1 s	20.48 μ s
10 kHz	24.414 kS/s	5497.6 s	21990.2 s	40.96 μ s
5 kHz	12.207 kS/s	10995.1 s	43980.5 s	81.92 μ s
2 kHz	3.052 kS/s	43980.4 s	175921.8 s	328 μ s
1 kHz	1.526 kS/s	87960.8 s	351843.6 s	655 μ s
500 Hz	762.9 S/s	175921.7 s	703687.3 s	1.31 ms
200 Hz	381.5 S/s	351843.4 s	1407374.5 s	2.62 ms
100 Hz	190.7 S/s	703686.8 s	2814749.1 s	5.24 ms

Displays and measurements

Frequency views

- Spectrum (amplitude vs linear or log frequency)
- DPX® spectrum display (live RF color-graded spectrum)
- Spectrogram (amplitude vs frequency over time)
- Spurious (amplitude vs linear or log frequency)
- Phase noise (phase noise and Jitter measurement) (Opt. 11)

Displays and measurements

Time and statistics views	Amplitude vs time Frequency vs time Phase vs time DPX amplitude vs time DPX frequency vs time DPX phase vs time Amplitude modulation vs time Frequency modulation vs time RF IQ vs time Time overview CCDF Peak-to-Average ratio
Settling time, frequency, and phase (Opt. 12) views	Frequency settling vs time, Phase settling vs time
Noise figure and gain (Opt. 14) views	Noise figure vs. frequency Gain vs. frequency Noise figure, gain at a single frequency Y-factor vs. frequency Noise temperature vs. frequency Uncertainty calculator Results table of all measurements
Advanced measurements views	Pulse results table Pulse trace (selectable by pulse number) Pulse statistics (trend of pulse results, FFT of trend, and histogram)
Digital demod (Opt. 21) views	Constellation diagram EVM vs time Symbol table (binary or hexadecimal) Magnitude and phase error versus time, and signal quality Demodulated IQ vs time Eye diagram Trellis diagram Frequency deviation vs time
Flexible OFDM analysis (Opt. 22) views	Constellation, scalar measurement summary EVM or power vs carrier Symbol table (binary or hexadecimal)
Frequency offset analysis	Signal analysis can be performed either at center frequency or the assigned measurement frequency up to the limits of the instrument's acquisition and measurement bandwidths.

Displays and measurements

WLAN 802.11a/b/g/j/p measurement application (Opt. 23)	WLAN Power vs time, WLAN symbol table, WLAN constellation, Spectrum emission mask Error vector magnitude (EVM) vs symbol (or time), vs subcarrier (or frequency) Mag error vs symbol (or time), vs subcarrier (or frequency) Phase error vs symbol (or time), vs subcarrier (or frequency) Channel frequency response vs symbol (or time), vs subcarrier (or frequency) Spectral flatness vs symbol (or time), vs subcarrier (or frequency)
WLAN 802.11n measurement application (Opt. 24)	WLAN Power vs time, WLAN symbol table, WLAN constellation, Spectrum emission mask Error vector magnitude (EVM) vs symbol (or time), vs subcarrier (or frequency) Mag error vs symbol (or time), vs subcarrier (or frequency) Phase error vs symbol (or time), vs subcarrier (or frequency) Channel frequency response vs symbol (or time), vs subcarrier (or frequency) Spectral flatness vs symbol (or time), vs subcarrier (or frequency)
WLAN 802.11ac measurement application (Opt. 25)	WLAN Power vs time, WLAN symbol table, WLAN constellation, Spectrum emission mask Error vector magnitude (EVM) vs symbol (or time), vs subcarrier (or frequency) Mag error vs symbol (or time), vs subcarrier (or frequency) Phase error vs symbol (or time), vs subcarrier (or frequency) Channel frequency response vs symbol (or time), vs subcarrier (or frequency) Spectral flatness vs symbol (or time), vs subcarrier (or frequency)
APCO P25 measurement application (Opt. 26)	RF output power, operating frequency accuracy, modulation emission spectrum, unwanted emissions spurious, adjacent channel power ratio, frequency deviation, modulation fidelity, frequency error, eye diagram, symbol table, symbol rate accuracy, transmitter power and encoder attack time, transmitter throughput delay, frequency deviation vs. time, power vs. time, transient frequency behavior, HCPM transmitter logical channel peak adjacent channel power ratio, HCPM transmitter logical channel off slot power, HCPM transmitter logical channel power envelope, HCPM transmitter logical channel time alignment, cross-correlated markers

Bandwidth related

Resolution bandwidth	
Resolution bandwidth range (spectrum analysis)	0.1 Hz to 5 MHz (10 MHz, Opt. B16x) (1, 2, 3, 5 sequence, Auto-coupled), or user selected (arbitrary)
Resolution bandwidth shape	Approximately Gaussian, shape factor 4.1:1 (60:3 dB) $\pm 10\%$, typical
Resolution bandwidth accuracy	$\pm 1\%$ (Auto-coupled RBW mode)
Alternative resolution bandwidth types	Kaiser window (RBW, gaussian), -6 dB mil, CISPR, Blackman-Harris 4B window, Uniform (none) window, Flat-top (CW ampl.) window, Hanning window
Video bandwidth	
Video bandwidth range	1 Hz to 10 MHz plus wide open
RBW/VBW maximum	10,000:1
RBW/VBW minimum	1:1 plus wide open

Bandwidth related

Resolution	5% of entered value
Accuracy (typical)	±10%

**Time domain bandwidth
(amplitude vs time display)**

Time domain bandwidth range	At least 1/10 to 1/10,000 of acquisition bandwidth, 1 Hz minimum
Time domain BW shape	≤10 MHz, approximately Gaussian, shape factor 4.1:1 (60:3 dB), ±10% typical
	20 MHz (60 MHz, Opt. B16x), shape factor <2.5:1 (60:3 dB) typical

Time domain bandwidth accuracy	1 Hz to 20 MHz, and (>20 MHz to 60 MHz Opt. B16x), ±10%
--------------------------------	---

Minimum settable spectrum analysis RBW vs. span

Frequency span	RBW
>10 MHz	100 Hz
>1.25 MHz to 10 MHz	10 Hz
≤1 MHz	1 Hz
≤100 kHz	0.1 Hz

Spectrum display traces, detector, and functions

Traces	Three traces + 1 math waveform + 1 trace from spectrogram for spectrum display
Detector	Peak, –Peak, Average (VRMS), ±Peak, Sample, CISPR (Avg, Peak, Quasi-peak average (of logs))
Trace functions	Normal, Average, Max hold, Min hold, Average (of logs)
Spectrum trace length	801, 2401, 4001, 8001, or 10401 points
Sweep speed (typical; RBW = auto, RF/IF optimization: minimize sweep time)	1500 MHz/s (Std.) 2500 MHz/s (Opt. B40) 6000 MHz/s (Opt. B16x)

Minimum FFT length vs. Trace length (independent of span and RBW)

Trace length (points)	Minimum FFT length
801	1024
2401	4096
4001	8192
10401	16384

DPX Related**DPX® digital phosphor spectrum processing**

Characteristic	Performance
Spectrum processing rate (RBW = auto, trace length 801)	390,625/s
DPX bitmap resolution	201 × 801
DPX bitmap color dynamic range	2 ³³ levels
Marker information	Amplitude, frequency, and signal density on the DPX display
Minimum signal duration for 100% probability of detection (Max-hold on)	See minimum signal duration for 100% probability of trigger at 100% amplitude table
Span Range (Continuous processing)	100 Hz to 25 MHz (40 MHz with Opt. B40) (85 MHz with Opt. B85) (165 MHz with Opt. B16x)
Span range (Swept)	Up to instrument frequency range
Dwell time per step ¹	50 ms to 100 s
Trace processing	Color-graded bitmap, +Peak, -Peak, average
Trace length	801, 2401, 4001, 10401
Resolution BW accuracy	±1%

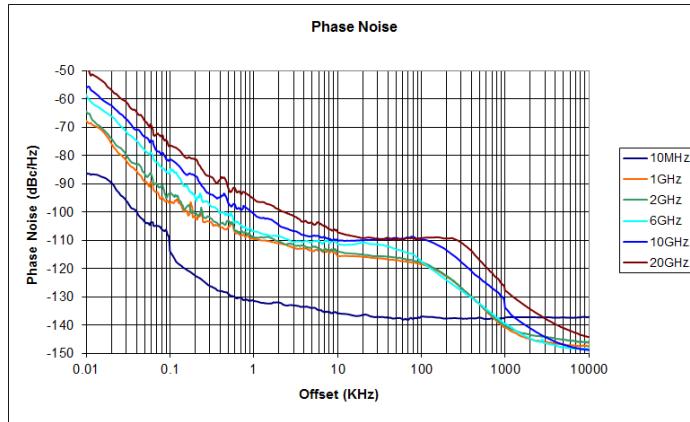
**Resolution BW Range vs.
Acquisition Bandwidth (DPX®)**

Acquisition bandwidth	RBW (Min)	RBW (Max)
165 MHz (Opt. B16x)	25 kHz	20 MHz
85 MHz (Opt. B85)	12.9 kHz	10 MHz
40 MHz (Opt. B40)	6.06 kHz	10 MHz
25 MHz	3.79 kHz	3.8 MHz
20 MHz	3.04 kHz	3.04 MHz
10 MHz	1.52 kHz	1.52 MHz
5 MHz	758 Hz	760 kHz
2 MHz	303 Hz	304 kHz
1 MHz	152 Hz	152 kHz
500 kHz	75.8 Hz	76 kHz
200 kHz	30.3 Hz	30.4 kHz
100 kHz	15.2 Hz	15.2 kHz
50 kHz	7.58 Hz	7.6 kHz
20 kHz	3.03 Hz	3.04 kHz
10 kHz	1.52 Hz	1.52 kHz
5 kHz	758 Hz	760 Hz
2 kHz	0.303 Hz	304 Hz
1 kHz	0.152 Hz	152 Hz
500 Hz	0.1 Hz	76 Hz
200 Hz	0.1 Hz	30.4 Hz
100 Hz	0.1 Hz	15.2 Hz

¹ Minimum RBW, swept spans (Opt. 200) – 10 kHz

Stability**Residual FM**<2 Hz_{p-p} in 1 second (95% confidence, typical).**Phase related****Phase noise sidebands**

dBc/Hz at specified center frequency (CF)


	CF = 10 MHz	CF = 1 GHz	CF = 2 GHz	CF = 6 GHz	CF = 10 GHz	CF = 20 GHz
Offset	Typical	Spec/Typical	Typical	Typical	Typical	Typical
1 kHz	-128	-103/-107	-107	-104	-99	-95
10 kHz	-134	-109/-113	-112	-108	-108	-106
100 kHz	-134	-112/-117	-115	-114	-108	-106
1 MHz	-135	-130/-139	-137	-135	-128	-125
6 MHz	-140	-137/-146	-142	-147	-145	-140
10 MHz	NA	-137/-146	-142	-147	-147	-144

Integrated phase (RMS), typical

Integrated from 1 kHz to 10 MHz.

Measurement frequency	Integrated phase, radians
1 GHz	1.01×10^{-3}
2 GHz	1.23×10^{-3}
6 GHz	1.51×10^{-3}
10 GHz	2.51×10^{-3}
20 GHz	3.27×10^{-3}

Typical phase noise performance as measured by Opt. 11.

Amplitude

Specifications excluding mismatch error

Measurement range	Displayed average noise level to maximum measurable input
Input attenuator range	0 dB to 55 dB, 5 dB step
Maximum safe input level	
Average continuous	+30 dBm (RF ATT \geq 10 dB, preamp off)
Average continuous	+20 dBm (RF ATT \geq 10 dB, preamp on)
Pulsed RF	50 W (RF ATT \geq 30 dB, PW <10 μ s, 1% duty cycle)
Maximum measurable input level	
Average continuous	+30 dBm (RF ATT: Auto)
Pulsed RF	10 W (RF Input, RF ATT: Auto, PW <10 μ s, 1% duty cycle repetitive pulses)
Max DC voltage	\pm 5 V
Log display range	0.01 dBm/div to 20 dB/div
Display divisions	10 divisions
Display units	dBm, dBmV, Watts, Volts, Amps, dBuW, dBuV, dBuA, dBW, dBV, dBV/m, and dBA/m
Marker readout resolution, dB units	0.01 dB
Marker readout resolution, Volts units	Reference-level dependent, as small as 0.001 μ V
Reference level setting range	0.1 dB step, -170 dBm to +50 dBm (minimum ref. level -50 dBm at center frequency <80 MHz)
Level linearity	\pm 0.1 dB (0 to -70 dB from reference level)

Amplitude accuracy

Absolute amplitude accuracy at calibration point	\pm 0.31 dB (100 MHz, -10 dBm signal, 10 dB ATT, 18 °C to 28 °C)
Input attenuator switching uncertainty	\pm 0.3 dB (SPECMON3B/SPECMON6B) \pm 0.15 dB (SPECMON26B)
Absolute amplitude accuracy at center frequency, 95% confidence²	
10 MHz to 3 GHz	\pm 0.3 dB
3 GHz to 6.2 GHz (SPECMON6B)	\pm 0.5 dB
6.2 GHz to 15 GHz (SPECMON26B)	\pm 0.75 dB
15 GHz to 26.5 GHz (SPECMON26B)	\pm 0.9 dB

² 18 °C to 28 °C, Ref Level \leq -15 dBm, Attenuator Auto-coupled, Signal Level -15 dBm to -50 dBm. 10 Hz \leq RBW \leq 1 MHz, after alignment performed.

Amplitude accuracy

VSWR

Typical			
SPECMON3B / SPECMON6B ³			
Frequency range	Preamp OFF (95% confidence)	Preamp ON (Typical)	Preamp ON, 0 dB attenuation (Typical)
>10 kHz to 10 MHz	<1.6	--	--
>10 MHz to 2.0 GHz	<1.1	<1.2	<1.5
>2 GHz to 3 GHz	<1.25	<1.4	<1.6
>3 GHz to 5 GHz	<1.25	<1.4	<1.4
>5 GHz to 5.5 GHz	<1.3	<1.4	<1.4
>5.5 GHz to 6.2 GHz	<1.3	<1.4	<1.75

Typical			
SPECMON26B			
Frequency range	Preamp OFF (95% confidence)	Preamp ON (Typical)	Preamp ON, 0 dB attenuation (Typical)
>10 kHz to 10 MHz	<1.6	--	--
10 MHz to 3.0 GHz	<1.3	<1.4	<1.9
>3.0 GHz to 6.2 GHz	<1.3	<1.5	<1.9
>6.2 GHz to 11 GHz	<1.5	<1.8	<2.25
>11 GHz to 15 GHz	<1.5	<1.8	<1.9
>15 GHz to 22 GHz	<1.5	<1.8	<1.9
>22 GHz to 25 GHz	<1.7	<2.0	<1.9
>25 GHz to 26.5 GHz	<1.7	<2.0	<2.1

Frequency response

18 °C to 28 °C, atten. = 10 dB,
preamp off

10 MHz to 32 MHz (LF band)	±0.7 dB
10 MHz to 3 GHz	±0.35 dB
>3 GHz to 6.2 GHz (SPECMON6B)	±0.5 dB
>6.2 GHz to 26.5 GHz (SPECMON26B)	±1.2 dB

5 °C to 40 °C, all attenuator
settings (typical, preamp off)

100 Hz to 32 MHz (LF band)	±0.8 dB
9 kHz to 3 GHz	±0.5 dB
>3 GHz to 6.2 GHz (SPECMON6B)	±1.0 dB
>6.2 GHz to 26.5 GHz (SPECMON6B)	±1.5 dB

Preamp on (Attenuation = 10 dB)

10 MHz to 32 MHz (LF band)	±0.8 dB
1 MHz to 3 GHz	±0.8 dB

³ Atten. = 10 dB, CF set within 200 MHz of VSWR frequency

Frequency response

>3 GHz to 6.2 GHz (SPECMON6B)	±1.3 dB
>6.2 GHz to 15 GHz (SPECMON26B)	±1.5 dB
>15 GHz to 26.5 GHz (SPECMON26B)	±2.0 dB

Noise and distortion

3rd order intermodulation distortion at 2.13 GHz⁴

SPECMON3B / SPECMON6B	-84 dBc
SPECMON26B	-80 dBc

3rd order intermodulation distortion – typical⁵

Note: 3rd order intercept point is calculated from 3rd order intermodulation performance.

Frequency range	3 rd order intermodulation distortion, dBc (typical)		3 rd order intercept, dBm (typical)	
	SPECMON3B/6B	SPECMON26B	SPECMON3B/6B	SPECMON26B
10 kHz to 32 MHz (LF band)	-75	-75	+12.5	+12.5
1 MHz to 120 MHz	-70	-70	+10	+10
>80 MHz to 300 MHz	-76	-76	+13	+13
>300 MHz to 6.2 GHz	-84	-82	+17	+16
>6.2 GHz to 15 GHz	--	-72	--	+11
15 GHz to 26.5 GHz	--	-72	--	+11

2nd harmonic distortion⁶

-40 dBm at RF input, Attenuator = 0, Preamp off, typical.

Frequency range	2 nd order harmonic distortion	
	SPECMON3B/6B	SPECMON26B
10 MHz to 1 GHz	-80	-80
>1 GHz to 3.1 GHz	-83	--
>500 MHz to 1 GHz	--	-74
>1 GHz to 3.1 GHz	--	-74
>3.1 GHz to 7.5 GHz	--	-85
>7.5 GHz to 13.25 GHz	--	-85

⁴ Each signal level -25 dBm, Ref level -20 dBm, Attenuator = 0 dB, 1 MHz tone separation.

⁵ Each signal level -25 dBm, Ref level -20 dBm, Attenuator = 0 dB, 1 MHz tone separation.

⁶ -40 dBm at RF input, attenuator = 0, preamp off, typical

Noise and distortion

Displayed average noise level,
Preamp off⁷

SPECMON3B / SPECMON6B		
Frequency range	Spec, dBm/Hz	Typical , dBm/Hz
LF Band		
1 Hz to 100 Hz	--	-129
>100 Hz to 2 kHz	-124	-143
>2 kHz to 10 kHz	-141	-152
>10 kHz to 32 MHz	-150	-153
RF band		
9 kHz to 1 MHz	-108	-111
>1 MHz to 10 MHz	-136	-139
>10 MHz to 2 GHz	-154	-155
>2 GHz to 3 GHz	-152	-155
>3 GHz to 4 GHz (SPECMON3B)	-151	-155
>4 GHz to 6.2 GHz (SPECMON6B)	-149	-152

SPECMON26B		
Frequency range	Spec, dBm/Hz	Typical , dBm/Hz
LF Band		
1 Hz to 100 Hz	--	-129
>100 Hz to 2 kHz	-124	-143
>2 kHz to 10 kHz	-141	-152
>10 kHz to 32 MHz	-150	-153
RF band		
1 MHz to 10 MHz	-136	-139
>10 MHz to 3 GHz	-152	-155
>3 GHz to 4 GHz	-151	-155
>4 GHz to 6.2 GHz	-149	-152
>6.2 GHz to 13 GHz	-146	-149
>13 GHz to 23 GHz	-144	-147
>23 GHz to 26.5 GHz	-140	-143

Preamplifier performance

SPECMON6B	
Frequency range	1 MHz to 3.0 GHz or 6.2 GHz
Noise figure at 2 GHz	<7 dB
Gain at 2 GHz	20 dB (nominal)
SPECMON26B	
Frequency range	1 MHz to 15 GHz or 26.5 GHz
Noise figure at 2 GHz	<10 dB
Noise figure at 26.5 GHz	<13 dB
Gain at 2 GHz	20 dB (nominal)

⁷ Measured using 1 kHz RBW, 100 kHz span, 100 averages, minimum noise mode, input terminated, log-average detector and trace function.

Noise and distortionDisplayed average noise level,
Preamp on⁸

SPECMON3B / SPECMON6B		
Frequency range	Spec, dBm/Hz	Typical , dBm/Hz
LF Band		
1 MHz to 32 MHz	-158	-160
RF band		
1 MHz to 10 MHz	-158	-160
>10 MHz to 2 GHz	-164	-167
>2 GHz to 3 GHz	-163	-165
>3 GHz to 6.2 GHz (SPECMON6B)	-162	-164

SPECMON26B		
Frequency range	Spec, dBm/Hz	Typical , dBm/Hz
RF band		
1 MHz to 10 MHz	-158	-160
>10 MHz to 2 GHz	-164	-167
>2 GHz to 3 GHz	-163	-165
>3 GHz to 4 GHz	-160	-163
>4 GHz to 6.2 GHz	-159	-162
>6.2 GHz to 13 GHz	-159	-162
>13 GHz to 23 GHz	-157	-160
>23 GHz to 26.5 GHz	-153	-156

Residual response

Input terminated, RBW = 1 kHz, attenuator = 0 dB, reference level -30 dBm

500 kHz to 32 MHz, LF band	<-100 dBm (typical)
500 kHz to 80 MHz, RF band	<-75 dBm (typical)
80 MHz to 200 MHz	<-95 dBm (typical)
200 MHz to 3 GHz	-95 dBm
3 GHz to 6.2 GHz (SPECMON6B/26B)	-95 dBm
6.2 GHz to 26.5 GHz (SPECMON26B)	-95 dBm

Image response, up to 165 MHz bandwidth Ref = -30 dBm, Attenuator = 10 dB, RF input level = -30 dBm, RBW = 10 Hz

100 Hz to 30 MHz	<-75 dBc
30 MHz to 3 GHz	<-75 dBc
>3 GHz to 6.2 GHz (SPECMON6B)	<-70 dBc
>6.2 GHz to 15 GHz (SPECMON26B)	<-76 dBc
>15 GHz to 26.5 GHz (SPECMON26B)	<-72 dBc

⁸ Measured using 1 kHz RBW, 100 kHz span, 100 averages, minimum noise mode, input terminated, log-average detector and trace function.

Noise and distortion

Spurious response with signal at CF, offset ≥ 400 kHz⁹

	Span ≤ 25 MHz		Span ≤ 40 MHz (Opt. B40) ¹⁰		Opt. B85/B16x ¹⁰	
	Swept spans > 25 MHz		Swept spans > 40 MHz		40 MHz $<$ span ≤ 160 MHz	
Frequency	Specification	Typical	Specification	Typical	Specification	Typical
10 kHz to 32 MHz (LF band)	-80 dBc	-85 dBc	--	--	--	--
30 MHz to 3 GHz	-73 dBc	-80 dBc	-73 dBc	-80 dBc	-73 dBc	-75 dBc
>3 GHz to 6.2 GHz (SPECMON6B / SPECMON26B)	-73 dBc	-80 dBc	-73 dBc	-80 dBc	-73 dBc	-75 dBc
6.2 GHz to 15 GHz (SPECMON26B)	-70 dBc	-80 dBc	-70 dBc	-80 dBc	-70 dBc	-73 dBc
15 GHz to 26.5 GHz (SPECMON26B)	-66 dBc	-76 dBc	-66 dBc	-76 dBc	-66 dBc	-73 dBc

Spurious response with signal at CF (10 kHz \leq offset < 400 kHz), typical¹¹

Frequency	Typical
10 kHz to 32 MHz (LF band)	-75 dBc
30 MHz to 3 GHz	-75 dBc
3 GHz to 6.2 GHz (SPECMON6B)	-75 dBc
6.2 GHz to 15 GHz (SPECMON26B)	-75 dBc
15 GHz to 26.5 GHz (SPECMON26B)	-68 dBc

Spurious response with signal at Half-IF (3532.75 MHz)

<80 dBc (RF input level, -30 dBm)

Local oscillator feed-through to input connector (attenuator = 10 dB, typical)

<-60 dBm (SPECMON3B / SPECMON6B)

<-90 dBm (SPECMON26B)

Adjacent channel leakage ratio dynamic range

Measured with test signal amplitude adjusted for optimum performance (CF = 2.13 GHz)

		ACLR, typical	
Signal type, measurement mode		Adjacent	Alternate
3GPP downlink, 1 DPCH			
	Uncorrected	-69 dB	-70 dB
	Noise corrected	-75 dB	-77 dB

⁹ RF input level = -15 dBm, Attenuator = 10 dB, Mode: Auto. Input signal at center frequency. Center Frequency > 90 MHz, Opt. B40/B85/B16x. For acquisition bandwidth 15 - 25 MHz with signals at center frequency and at \pm (37.5 MHz to 42.5 MHz): 65 dBc.

¹⁰ CF > 150 MHz

¹¹ RF Input Level = -15 dBm, Attenuator = 10 dB, Mode: Auto. Input signal at center frequency. Center frequency > 90 MHz, Opt. B40/B85/B16x. For acquisition bandwidth 15 - 25 MHz with signals at center frequency and at \pm (37.5 MHz to 42.5 MHz): 65 dBc.

Noise and distortion

IF frequency response and phase linearity, includes all preselection and image rejection filters¹²

Measurement frequency (GHz)	Acquisition bandwidth	Amplitude flatness (Spec)	Amplitude flatness (typical, RMS)	Phase linearity (typical, RMS)
0.001 to 0.032 (LF band)	≤20 MHz	±0.4 dB	0.3 dB	0.5°
0.01 to 6.2 ¹³	≤300 kHz	±0.1 dB	0.05 dB	0.1°
0.03 to 6.2	≤25 MHz	±0.3 dB	0.2 dB	0.5°
Opt. B40				
0.03 to 6.2	≤40 MHz	±0.3 dB	0.2 dB	0.5°
Opt. B85				
0.07 to 3.0	≤85 MHz	±0.5 dB	0.3 dB	1.5°
>3.0 to 6.2	≤85 MHz	±0.5 dB	0.4 dB	1.5°
Opt. B16x				
>0.1 to 6.2	≤165 MHz	±0.5 dB	0.4 dB	1.5

Frequency mask trigger

Mask shape	User defined
Mask point horizontal resolution	<2% of span
Level range	0 dB to -80 dB from reference level
Level accuracy ¹⁴	
0 to -50 dB from reference level	±(Channel response + 1.0 dB)
-50 dB to -70 dB from reference level	±(Channel response + 2.5 dB)
Span range	100 Hz to 25 MHz 100 Hz to 40 MHz (Opt. B40) 100 Hz to 165 MHz (Opt. B16x)
Trigger position uncertainty	
Span = 25 MHz	±9 µs (RBW = auto)
Span = 40 MHz (Opt. B40)	±7 µs (RBW = Auto)
Span = 165 MHz (Opt. B16x)	±5 µs (RBW = Auto)

¹² Amplitude flatness and phase deviation over the acquisition BW, includes RF frequency response. Attenuator setting: 10 dB.

¹³ High dynamic range mode selected.

¹⁴ For masks >30 dB above noise floor

Frequency mask trigger

Minimum signal duration for 100% probability of trigger at 100% amplitude

Frequency-Mask and DPX signal processing				Minimum signal duration, 100% probability of intercept, Frequency-Mask and DPX density trigger (μs) ¹⁵			
Span (MHz)	RBW (kHz)	FFT Length (points)	Spectrums / sec	Standard		Opt. 09	
				Full amplitude	-3 dB	Full amplitude	-3 dB
165 MHz	20000	1024	390,625	15.5	15.4	2.7	2.6
	10000	1024	390,625	15.6	15.4	2.8	2.6
	1000	1024	390,625	17.8	15.7	5.0	2.9
	300	2048	195,313	23.4	16.3	13.1	6.1
	100	8192	48,828	44.5	23.4	44.5	23.4
	30	32768	12,207	161.9	91.7	161.9	91.7
85 MHz	10000	1024	390,625	15.6	15.4	2.8	2.6
	1000	1024	390,625	17.8	15.7	5.0	2.9
	500	1024	390,625	20.2	15.9	7.4	3.1
	300	1024	390,625	23.4	16.3	10.6	3.5
	100	4096	97,656	44.5	23.4	34.2	13.2
	30	16384	24,414	121.0	50.7	121.0	50.7
	20	16384	24,414	161.0	55.6	161.0	55.6
40 MHz	5000	1024	390,625	15.8	15.4	3.0	2.6
	1000	1024	390,625	17.8	15.7	5.0	2.9
	300	1024	390,625	23.3	16.3	10.5	3.5
	100	2048	195,313	39.4	18.3	29.1	8.1
	30	4096	97,656	90.4	21.8	90.4	21.8
	20	8192	48,828	140.7	36.3	140.7	36.3
	10	16384	24,414	281.3	72.6	281.3	72.6
25 MHz	3800	1024	390,625	16.0	15.4	3.2	2.6
	1000	1024	390,625	17.7	15.7	4.9	2.9
	300	1024	390,625	23.4	16.3	10.6	3.5
	200	1024	390,625	27.4	16.8	14.6	4.1

DPX zero-span performance

Zero-span amplitude, frequency, phase performance (nominal)

Measurement BW range	100 Hz to maximum acquisition bandwidth of instrument
Time domain BW (TDBW) range	At least 1/10 to 1/10,000 of acquisition bandwidth, 1 Hz minimum
Time domain BW (TDBW) accuracy	±1%
Sweep time range	100 ns (minimum) 2000 s (maximum, Measurement BW >80 MHz)
Time accuracy	±(0.5% + Reference frequency accuracy)
Zero-span trigger timing uncertainty (Power trigger)	±(Zero-span sweep time/400) at trigger point
DPX frequency display range	±100 MHz maximum

¹⁵ Values displayed by the instrument may differ by 0.1μs

DPX zero-span performance

DPX phase display range	±200 degrees maximum
DPX waveforms/s	50,000 triggered waveforms/s for sweep time $\leq 20 \mu\text{s}$
DPX spectrogram trace detection	+Peak, -Peak, Avg (V_{RMS})
DPX spectrogram trace length	801 to 10401
DPX spectrogram memory depth	Trace length = 801: 60,000 traces Trace length = 2401: 20,000 traces Trace length = 4001: 12,000 traces Trace length = 10401: 4,600 traces
Time resolution per line	User settable. 25.6 μs to 6400 s (std.) 5.12 μs to 6400 s (Opt. 09)
Maximum recording time vs line resolution	1.54 seconds (801 points/trace, 25.6 $\mu\text{s}/\text{line}$) to 4444 days (801 points/trace, 6400 s/line) 0.31 seconds (801 points/trace, 5.12 $\mu\text{s}/\text{line}$) to 4444 days (801 points/trace, 6400 s/line), Opt. 09

Advanced triggers

DPX density trigger	
Density range	0 to 100% density
Horizontal range	0.25 Hz to 25 MHz (Std.) 0.25 Hz to 40 MHz (Opt. B40) 0.25 Hz to 165 MHz (Opt. B16x)
Minimum signal duration for 100% probability of trigger	See minimum signal duration for 100% probability of trigger at 100% amplitude table
Frequency edge trigger	
Range	$\pm(\frac{1}{2} \times (\text{ACQ BW or TDBW if TDBW is active}))$
Minimum event duration	6.2 ns (ACQ BW = 165 MHz, no TDBW, Opt. B16x) 6.2 ns (ACQ BW = 85 MHz, no TDBW, Opt. B85) 25 ns (ACQ BW = 40 MHz, no TDBW, Opt. B40) 25 ns (ACQ BW = 25 MHz, no TDBW, Std.)
Timing uncertainty	Same as power trigger position timing uncertainty
Runt trigger	
Runt definitions	Positive, Negative
Accuracy (for trigger levels $> 30 \text{ dB}$ above noise floor, 10% to 90% of signal level)	$\pm 0.5 \text{ dB}$ (level $\geq -50 \text{ dB}$ from reference level) $\pm 1.5 \text{ dB}$ (from $< -50 \text{ dB}$ to -70 dB from reference level)

Advanced triggers**Time qualified triggering**

Trigger types and source Time qualification may be applied to: Level, Frequency mask, DPX Density, Runt, Frequency edge, Ext. 1, Ext. 2

Time qualification range T1: 0 to 10 seconds

T2: 0 to 10 seconds

Time qualification definitions Shorter than T1

Longer than T1

Longer than T1 AND shorter than T2

Shorter than T1 OR longer than T2

Holdoff trigger

Range 0 to 10 seconds

Digital IQ Output (Opt. 55)

Connector type MDR (3M) 50 pin × 2

Data output Data is corrected for amplitude and phase response in real time

Data format I data: 16 bit LVDS

Q data: 16 bit LVDS

Control output Clock: LVDS, Max 50 MHz (200 MHz, Opt. B85, B16x) DV (Data valid), MSW (Most significant word) indicators, LVDS

Control input IQ data output enabled, connecting GND enables output of IQ data

Clock rising edge to data transition time (Hold time) 8.4 ns (Std, Opt. B40), 1.58 ns (Opt. B85, B16x), typical

Data transition to clock rising edge (Setup time) 8.2 ns (Std., Opt. B40), 1.54 ns (Opt. B85, B16x), typical

AM/FM/PM and direct audio measurement (Opt. 10)**Analog demodulation**

Carrier frequency range (for modulation and audio measurements) (1/2 × audio analysis bandwidth) to maximum input frequency

Maximum audio frequency span 10 MHz

Audio filters

Low pass (kHz) 0.3, 3, 15, 30, 80, 300, and user-entered up to 0.9 × audio bandwidth

High pass (Hz) 20, 50, 300, 400, and user-entered up to 0.9 × audio bandwidth

Standard CCITT, C-Message

De-emphasis (μs) 25, 50, 75, 750, and user-entered

File User-supplied .TXT or .CSV file of amplitude/frequency pairs. Maximum 1000 pairs

AM/FM/PM and direct audio measurement (Opt. 10)

FM Modulation Analysis (Modulation Index >0.1)

FM measurements	Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise
Carrier power accuracy (10 MHz to 2 GHz, -20 to 0 dBm input power)	±0.85 dB
Carrier frequency accuracy (deviation: 1 to 10 kHz)	±0.5 Hz + (transmitter frequency × reference frequency error)
FM deviation accuracy (rate: 1 kHz to 1 MHz)	±(1% of (rate + deviation) + 50 Hz)
FM rate accuracy (deviation: 1 to 100 kHz)	±0.2 Hz

Residuals (FM) (rate: 1 to 10 kHz, deviation: 5 kHz)

THD	0.10%
Distortion	0.7%
SINAD	43 dB

AM modulation analysis

AM measurements	Carrier Power, Audio Frequency, Modulation Depth (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise
Carrier power accuracy (10 MHz to 2 GHz, -20 to 0 dBm input power)	±0.85 dB
AM depth accuracy (rate: 1 to 100 kHz, depth: 10% to 90%)	±0.2% + 0.01 × measured value
AM rate accuracy (rate: 1 kHz to 1 MHz, depth: 50%)	±0.2 Hz

Residuals (AM)

THD	0.16%
Distortion	0.13%
SINAD	58 dB

PM modulation analysis

PM measurements	Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise
Carrier power accuracy (10 MHz to 2 GHz, -20 to 0 dBm input power)	±0.85 dB
Carrier frequency accuracy (deviation: 0.628 rad)	±0.02 Hz + (transmitter frequency × reference frequency error)
PM deviation accuracy (rate: 10 to 20 kHz, deviation: 0.628 to 6 rad)	±100% × (0.005 + (rate / 1 MHz))
PM rate accuracy (rate: 1 to 10 kHz, deviation: 0.628 rad)	±0.2 Hz

AM/FM/PM and direct audio measurement (Opt. 10)

Residuals (PM) (rate: 1 to 10 kHz,
deviation: 0.628 rad)

THD	0.1%
Distortion	1%
SINAD	40 dB

Direct audio input

Audio measurements	Signal power, Audio frequency (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation distortion, S/N, Total harmonic distortion, Total non-harmonic distortion, Hum and Noise
Direct input frequency range (for audio measurements only)	1 Hz to 156 kHz
Maximum audio frequency span	156 kHz
Audio frequency accuracy	± 0.2 Hz
Signal power accuracy	± 1.5 dB

Residuals (Rate: 1 to 10 kHz, Input level: 0.316 V)

THD	0.1%
Distortion	0.1%
SINAD	60 dB

Phase noise and jitter measurement (Opt. 11)

Carrier frequency range 1 MHz to maximum instrument frequency

Measurements Carrier power, Frequency error, RMS phase noise, Jitter (time interval error), Residual FM

Residual Phase Noise See Phase noise specifications

Phase noise and jitter integration bandwidth range Minimum offset from carrier: 10 Hz
Maximum offset from carrier: 1 GHz

Number of traces 2

Trace and measurement functions Detection: average or \pm Peak
Smoothing Averaging
Optimization: speed or dynamic range

Settling time phase and frequency

Settled frequency uncertainty 95% confidence (typical), at stated measurement frequencies, bandwidths, and # of averages

Frequency uncertainty at stated measurement bandwidth					
Measurement frequency, averages	165 MHz	85 MHz	10 MHz	1 MHz	100 kHz
1 GHz					
Single measurement	2 kHz	2 kHz	100 Hz	10 Hz	1 Hz
100 averages	200 Hz	200 Hz	10 Hz	1 Hz	0.1 Hz
1000 averages	50 Hz	50 Hz	2 Hz	1 Hz	0.05 Hz
10 GHz					
Single measurement	5 kHz	5 kHz	100 Hz	10 Hz	5 Hz
100 averages	300 Hz	300 Hz	10 Hz	1 Hz	0.5 Hz
1000 averages	100 Hz	100 Hz	5 Hz	0.5 Hz	0.1 Hz
20 GHz					
Single measurement	2 kHz	2 kHz	100 Hz	10 Hz	5 Hz
100 averages	200 Hz	200 Hz	10 Hz	1 Hz	0.5 Hz
1000 averages	100 Hz	100 Hz	5 Hz	0.5 Hz	0.2 Hz

Settled phase uncertainty

95% confidence (Typical), at stated measurement frequencies, bandwidths, and # of averages

Frequency uncertainty at stated measurement bandwidth				
Measurement frequency, averages	165 MHz	85 MHz	10 MHz	1 MHz
1 GHz				
Single measurement	1.00°	1.00°	0.50°	0.50°
100 averages	0.10°	0.10°	0.05°	0.05°
1000 averages	0.05°	0.05°	0.01°	0.01°
10 GHz				
Single measurement	1.50°	1.50°	1.00°	0.50°
100 averages	0.20°	0.20°	0.10°	0.05°
1000 averages	0.10°	0.10°	0.05°	0.02°
20 GHz				
Single measurement	1.00°	1.00°	0.50°	0.50°
100 averages	0.10°	0.10°	0.05°	0.05°
1000 averages	0.05°	0.05°	0.02°	0.02°

Noise figure and gain (Option 14)

Measurements (tabular)	Noise Figure, Gain, Y-Factor, Noise Temperature, P-Hot, P-Cold														
Measurements (displays)	Noise Figure, Gain, Y-Factor, Noise Temperature, Uncertainty Calculator														
Single frequency measurements	When Single Frequency mode is selected, each display acts as a meter and single-value readout for each selected trace in the measurement														
Measurement configurations	Direct, Up-Converter, Down-Converter														
Frequency modes	Single Frequency, Swept (Center+Span or Start-Stop), Frequency Table; 1 to 999 measurement points														
Noise source	Constant ENR or tabular entry; entry fields for noise source model and type														
Noise sources supported	NoiseCom NC346 series and similar models from other manufacturers														
Noise source control	+28V switched output, rear panel														
External gain/loss tables	3 tables or constants available for gain or loss														
Measurement control settings	Source settling time, reference temperature, RBW(50 Hz to 10 MHz), Average count(1 to 100)														
Instrument input control settings	Attenuator value, Preamp On/Off														
Trace controls	3 traces per display: Ave(VRMS), Max-hold, Min-hold trace functions														
Display scaling	Auto or manual: Auto resets scale after each measurement														
Markers	Up to 5 markers on any trace; Absolute and Delta marker functions														
Limit mask testing	Positive and negative limits may be applied to noise figure, gain, Y-factor traces; limits and Pass/Fail indicated on screen														
Uncertainty calculator	Provides noise figure and gain measurement uncertainty based on user-entered values for ENR, external preamp, external preamp, and spectrum analyzer parameters														
Application preset for Noise Figure and Gain	Sets the analyzer to measure Gain, Noise Figure, and the Measurement Table. Sets attenuation to zero, preamplifier ON, and acquisition mode to best for minimum noise														
Performance	<table border="1"> <thead> <tr> <th>Specification</th><th>Description</th></tr> </thead> <tbody> <tr> <td>Frequency range</td><td>10 MHz to maximum frequency of instrument (nominal)</td></tr> <tr> <td>Noise figure measurement range</td><td>0 to 30 dB (nominal)</td></tr> <tr> <td>Gain measurement range</td><td>-10 to 30 dB (nominal)</td></tr> <tr> <td>Noise figure and gain measurement resolution</td><td>0.01 dB (nominal)</td></tr> <tr> <td>Noise figure measurement error</td><td>± 0.1 dB (typical)¹⁶</td></tr> <tr> <td>Gain measurement error</td><td>± 0.1 dB (typical)¹⁶</td></tr> </tbody> </table>	Specification	Description	Frequency range	10 MHz to maximum frequency of instrument (nominal)	Noise figure measurement range	0 to 30 dB (nominal)	Gain measurement range	-10 to 30 dB (nominal)	Noise figure and gain measurement resolution	0.01 dB (nominal)	Noise figure measurement error	± 0.1 dB (typical) ¹⁶	Gain measurement error	± 0.1 dB (typical) ¹⁶
Specification	Description														
Frequency range	10 MHz to maximum frequency of instrument (nominal)														
Noise figure measurement range	0 to 30 dB (nominal)														
Gain measurement range	-10 to 30 dB (nominal)														
Noise figure and gain measurement resolution	0.01 dB (nominal)														
Noise figure measurement error	± 0.1 dB (typical) ¹⁶														
Gain measurement error	± 0.1 dB (typical) ¹⁶														

Note: These conditions for Noise Figure and Gain specifications apply: Operating temperature 18 to 28 deg. C, after 20 minute warmup with internal preamp ON, immediately after internal alignment. Specified error includes only the error of the spectrum analyzer. Uncertainty from errors in ENR source level, external amplifier gain, low SN ratio and measurement system mismatch are not included, and can all be estimated using the uncertainty calculator included in the software.

¹⁶ For (ENR of noise source) > (measured noise figure + 4 dB)

Advanced measurement suite

Measurements	Average on power, Peak power, Average transmitted power, Pulse width, Rise time, Fall time, Repetition interval (seconds), Repetition rate (Hz), Duty factor (%), Duty factor (ratio), Ripple (dB), Ripple (%), Droop (dB), Droop (%), Overshoot (dB), Overshoot (%), Pulse-Pulse frequency difference, Pulse-Pulse phase difference, RMS frequency error, Max frequency error, RMS phase error, Max phase error, Frequency deviation, Phase deviation, Impulse response (dB), Impulse response (time), Time stamp
Minimum pulse width for detection	150 ns (standard, Opt. B40), 50 ns (Opt. B85, B16x)
Number of pulses	1 to 10,000
System rise time (typical)	<40 ns (standard), <25ns (Opt. B40), <12 ns (Opt. B85), <7 ns (Opt. B16x)
Pulse measurement accuracy	Signal conditions: Unless otherwise stated, pulse width >450 ns (150 ns, Opt. B85/B16x), S/N ratio \geq 30 dB, duty cycle 0.5 to 0.001, temperature 18 °C to 28 °C
Impulse response	Measurement range: 15 to 40 dB across the width of the chirp Measurement accuracy (typical): \pm 2 dB for a signal 40 dB in amplitude and delayed 1% to 40% of the pulse chirp width ¹⁷
Impulse response weighting	Taylor window

Pulse measurement performance

Pulse amplitude and timing (typical)

Average on power¹⁸	\pm 0.3 dB + Absolute amplitude accuracy
Average transmitted power¹⁸	\pm 0.4 dB + Absolute amplitude accuracy
Peak power¹⁸	\pm 0.4 dB + Absolute amplitude accuracy
Pulse width	\pm 0.25% of reading
Duty factor	\pm 0.2% of reading

¹⁷ Chirp width 100 MHz, pulse width 10 μ s, minimum signal delay 1% of pulse width or 10/(chirp bandwidth), whichever is greater, and minimum 2000 sample points during pulse on-time.

¹⁸ Pulse width >300 ns (100 ns, Opt. B85/B16x) SNR \geq 30 dB

Pulse measurement performance

Frequency and phase error
referenced to nonchirped signal

At stated frequencies and measurement bandwidths ¹⁹, typical, 95% confidence

Bandwidth	CF	RMS frequency error	Pulse to pulse frequency	Pulse to pulse delta frequency	Pulse to pulse phase
25 MHz	2 GHz	±2.5 kHz	±15 kHz	±500 Hz	±0.2°
	10 GHz	±2.5 kHz	±20 kHz	±1.5 kHz	±0.5°
	20 GHz	±3.5 kHz	±25 kHz	±2 kHz	±0.8°
40 MHz	2 GHz	±3.5 kHz	±20 kHz	±1 kHz	±0.2°
	10 GHz	±5 kHz	±30 kHz	±2 kHz	±0.5°
	20 GHz	±7.5 kHz	±40 kHz	±3 kHz	±0.8°
60 MHz	2 GHz	±8 kHz	±50 kHz	±1.5 kHz	±0.3°
	10 GHz	±15 kHz	±75 kHz	±3 kHz	±0.5°
	20 GHz	±20 kHz	±100 kHz	±4 kHz	±0.8°
85 MHz	2 GHz	±15 kHz	±100 kHz	±2 kHz	±0.3°
	10 GHz	±20 kHz	±125 kHz	±3 kHz	±0.5°
	20 GHz	±25 kHz	±175 kHz	±4 kHz	±0.8°
160 MHz	2 GHz	±20 kHz	±100 kHz	±4.5 kHz	±0.3°
	10 GHz	±25 kHz	±125 kHz	±6 kHz	±0.5°
	20 GHz	±40 kHz	±175 kHz	±8 kHz	±0.8°

Frequency and phase error
referenced to a linear chirp

At stated frequencies and measurement bandwidths ²⁰, typical

Bandwidth	CF	RMS frequency error	Pulse to pulse frequency	Pulse to pulse phase
25 MHz	2 GHz	±5 kHz	±15 kHz	±0.25°
	10 GHz	±8 kHz	±20 kHz	±0.5°
	20 GHz	±10 kHz	±25 kHz	±0.8°
40 MHz	2 GHz	±5 kHz	±20 kHz	±0.25°
	10 GHz	±8 kHz	±30 kHz	±0.5°
	20 GHz	±10 kHz	±50 kHz	±0.8°
60 MHz	2 GHz	±25 kHz	±125 kHz	±0.3°
	10 GHz	±30 kHz	±150 kHz	±0.5°
	20 GHz	±30 kHz	±150 kHz	±0.8°
85 MHz	2 GHz	±25 kHz	±125 kHz	±0.3°
	10 GHz	±30 kHz	±150 kHz	±0.5°
	20 GHz	±30 kHz	±175 kHz	±0.8°
160 MHz	2 GHz	±35 kHz	±125 kHz	±0.3°
	10 GHz	±40 kHz	±150 kHz	±0.5°
	20 GHz	±40 kHz	±200 kHz	±0.8°

¹⁹ Pulse ON Power ≥ -20 dBm, Signal peak at reference Level, Attenuator = Auto, $t_{meas} - t_{reference} \leq 10$ ms, Frequency estimation: Manual. Pulse-to-Pulse measurement time position excludes the beginning and ending of the pulse extending for a time = (10 / Measurement BW) as measured from 50% of the $t_{(rise)}$ or $t_{(fall)}$. Absolute frequency error determined over center 50% of pulse.

²⁰ Signal type: Linear chirp, Peak-to-Peak chirp deviation: ≤0.8 Measurement BW, Pulse ON Power ≥ -20 dBm, Signal peak at reference Level, Attenuator = 0 dB, $t_{meas} - t_{reference} \leq 10$ ms, Frequency estimation: Manual. Pulse-to-Pulse measurement time position excludes the beginning and ending of the pulse extending for a time = (10 / Measurement BW) as measured from 50% of the $t_{(rise)}$ or $t_{(fall)}$. Absolute frequency error determined over center 50% of pulse.

Digital modulation analysis (Opt. 21)

Modulation formats	$\pi/2$ DBPSK, BPSK, SBPSK, QPSK, DQPSK, $\pi/4$ DQPSK, D8PSK, D16PSK, 8PSK, OQPSK, SOQPSK, CPM, 16/32-APSK, 16/32/64/128/256QAM, MSK, GMSK, 2-FSK, 4-FSK, 8-FSK, 16-FSK, C4FM
Analysis period	Up to 81,000 samples
Filter types	
Measurement filters	Square-root raised cosine, Raised cosine, Gaussian, Rectangular, IS-95, IS-95 EQ, C4FM-P25, Half-sine, None, User defined
Reference filters	Raised cosine, Gaussian, Rectangular, IS-95, SBPSK-MIL, SOQPSK-MIL, SOQPSK-ARTM, none, user defined
Alpha/B*T range	0.001 to 1, 0.001 step
Measurements	Constellation, Error vector magnitude (EVM) vs. Time, Modulation error ratio (MER), Magnitude error vs. Time, Phase error vs. Time, Signal quality, Symbol table, Rho FSK only: Frequency deviation, Symbol timing error
Symbol rate range	1 kS/s to 100 MS/s (modulated signal must be contained entirely within acquisition BW of the instrument)
QPSK residual EVM²¹	
100 kHz symbol rate	<0.35%
1 MHz symbol rate	<0.35%
10 MHz symbol rate	<0.4%
30 MHz symbol rate (Opt. B40/ B85/B16x)	<0.75%
60 MHz symbol rate (Opt. B85/ B16x)	<1.0%
120 MHz symbol rate (Opt. B16x)	<1.5%
Offset QPSK residual EVM²²	
100 kHz symbol rate, 200 kHz measurement BW	<0.5%
1 MHz symbol rate, 2 MHz measurement BW	<0.5%
10 MHz symbol rate, 20 MHz measurement BW	<1.1%
256 QAM residual EVM²³	
10 MHz symbol rate	<0.4%
30 MHz symbol rate (Opt. B40/ B85/B16x)	<0.6%
60 MHz symbol rate (Opt. B85/ B16x)	<0.6%
120 MHz symbol rate (Opt. B16x)	<1.0%

²¹ CF = 2 GHz, Measurement filter = Root raised cosine, Reference filter = Raised cosine, Analysis length = 200 symbols.²² CF = 2 GHz, Measurement filter = Root raised cosine, Reference filter = Raised cosine, Analysis length = 200 symbols.²³ CF = 2 GHz, Measurement filter = Root raised cosine, Reference filter = Raised cosine, Analysis length = 400 symbols 20 averages.

Digital modulation analysis (Opt. 21)

S-OQPSK (MIL) residual EVM²⁴

4 kHz symbol rate, 64 kHz <0.3%
measurement bandwidth, CF =
250 MHz

20 kHz symbol rate, 320 kHz <0.5%
measurement bandwidth, CF =
2 GHz

100 kHz symbol rate, 1.6 MHz <0.5%
measurement bandwidth, CF =
2 GHz

1 MHz symbol rate, 16 MHz <0.5%
measurement bandwidth, CF =
2 GHz

S-OQPSK (ARTM) residual EVM²⁵

4 kHz symbol rate, 64 kHz <0.3%
measurement bandwidth, CF =
250 MHz

20 kHz symbol rate, 320 kHz <0.4%
measurement bandwidth, CF =
2 GHz

100 kHz symbol rate, 1.6 MHz <0.4%
measurement bandwidth, CF =
2 GHz

1 MHz symbol rate, 16 MHz <0.4%
measurement bandwidth, CF =
2 GHz

S-BPSK (MIL) residual EVM²⁶

4 kHz symbol rate, 64 kHz <0.25%
measurement bandwidth, CF =
250 MHz

20 kHz symbol rate, 320 kHz <0.5%
measurement bandwidth, CF =
2 GHz

100 kHz symbol rate, 1.6 MHz <0.5%
measurement bandwidth, CF =
2 GHz

1 MHz symbol rate, 1.6 MHz <0.5%
measurement bandwidth, CF =
2 GHz

CPM (MIL) residual EVM²⁷

4 kHz symbol rate, 64 kHz <0.3%
measurement bandwidth, CF =
250 MHz

20 kHz symbol rate, 320 kHz <0.4%
measurement bandwidth, CF =
2 GHz

²⁴ Reference Filter: MIL STD Measurement Filter: none.

²⁵ Reference Filter: MIL STD Measurement Filter: none.

²⁶ Reference Filter: MIL STD.

²⁷ Reference Filter: MIL STD.

Digital modulation analysis (Opt. 21)

100 kHz symbol rate, 1.6 MHz measurement bandwidth, CF = 2 GHz	<0.4%
1 MHz symbol rate, 16 MHz measurement bandwidth, CF = 2 GHz	<0.4%

2/4/8/16 FSK residual RMS FSK error²⁸

2FSK, 10 kHz symbol rate, 10 kHz frequency deviation, CF = 2 GHz	<0.3%
4/8/16FSK, 10 kHz symbol rate, 10 kHz frequency deviation, CF = 2 GHz	<0.4%

Adaptive equalizer

Type	Linear, decision-directed, feed-forward (FIR) equalizer with co-efficient adaptation and adjustable convergence rate
Modulation types supported	BPSK, QPSK, OQPSK, π/2DBPSK, π/4DQPSK, 8PSK, 8DPSK, 16DPSK, 16/32/64/128/256QAM
Reference filters for all modulation types except OQPSK	Raised cosine, rectangular, none
Reference filters for OQPSK	Raised cosine, half sine
Filter length	3 to 2001 taps
Taps/Symbol: raised cosine, half sine	1, 2, 4, 8
Taps/Symbol: rectangular filter, no filter	1
Equalizer controls	Off, train, hold, reset

Flexible OFDM (Opt. 22)

Recallable standards	WiMAX 802.16-2004, WLAN 802.11 a/g/j
Parameter settings	Guard interval, subcarrier spacing, channel bandwidth
Advanced parameter settings	Carrier detect: 802.11, 802.16-2004 - Auto-detect; Manual select BPSK; QPSK, 16QAM, 64QAM Channel estimation: Preamble, Preamble + Data Pilot tracking: Phase, Amplitude, Timing Frequency correction: On, Off

²⁸ Reference filter: None, Measurement filter: None.

Flexible OFDM (Opt. 22)

Summary measurements	Symbol clock error, Frequency error, Average power, Peak-to-Average, CPE EVM (RMS and peak) for all carriers, plot carriers, data carriers OFDM parameters: Number of carriers, Guard interval (%), Subcarrier spacing (Hz), FFT Length Power (Average, Peak-to-Average)
Displays	EVM vs symbol, vs subcarrier Subcarrier power vs symbol, vs subcarrier Mag error vs symbol, vs subcarrier Phase error vs symbol, vs subcarrier Channel frequency response
Residual EVM	-49 dB (WiMAX 802.16-2004, 5 MHz BW) -49 dB (WLAN 802.11g, 20 MHz BW) Signal input power optimized for best EVM

WLAN IEEE802.11a/b/g/j/p (Opt. 23)

Modulation formats	DBPSK (DSSS-1M), DQPSK (DSSS-2M), CCK 5.5M, CCK 11M, OFDM (BPSK, QPSK, 16QAM, 64QAM)
Measurements and displays	Burst index, Burst power, Peak to average burst power, IQ origin offset, Frequency error, Common pilot error, Symbol clock error RMS and Peak EVM for Pilots/Data, Peak EVM located per symbol and subcarrier Packet header format information Average power and RMS EVM per section of the header WLAN power vs time, WLAN symbol table, WLAN constellation Spectrum emission mask, spurious Error vector magnitude (EVM) vs symbol (or time), vs subcarrier (or frequency) Mag error vs symbol (or time), vs subcarrier (or frequency) Phase error vs symbol (or time), vs subcarrier (or frequency) WLAN channel frequency response vs symbol (or time), vs subcarrier (or frequency) WLAN spectral flatness vs symbol (or time), vs subcarrier (or frequency)
Residual EVM - 802.11b (CCK-11 Mbps)	RMS-EVM over 1000 chips, EQ On Signal input power optimized for best EVM 2.4 GHz: 1%(-40 dB) typical, 0.9% (-40.9 dB) typical-mean
Residual EVM - 802.11a/g/j (OFDM, 20 MHz, 64-QAM)	RMS-EVM averaged over 20 bursts, 16 symbols each Signal input power optimized for best EVM 2.4 GHz -49 dB typical, -50 dB typical-mean 5.8 GHz -49 dB typical, -50 dB typical-mean

WLAN IEEE802.11n (Opt. 24)

Modulation formats	OFDM (BPSK, QPSK, 16 or 64QAM)
Measurements and displays	Burst index, Burst power, Peak to average burst power, IQ origin offset, Frequency error, Common pilot error, Symbol clock error RMS and Peak EVM for Pilots/Data, Peak EVM located per symbol and subcarrier Packet header format information Average power and RMS EVM per section of the header WLAN power vs time, WLAN symbol table, WLAN constellation Spectrum emission mask, spurious Error vector magnitude (EVM) vs symbol (or time), vs subcarrier (or frequency) Mag error vs symbol (or time), vs subcarrier (or frequency) Phase error vs symbol (or time), vs subcarrier (or frequency) WLAN channel frequency response vs symbol (or time), vs subcarrier (or frequency) WLAN spectral flatness vs symbol (or time), vs subcarrier (or frequency)
Residual EVM - 802.11n (40 MHz, 64-QAM)	RMS-EVM over averaged over 20 bursts, 16 symbols each Signal input power optimized for best EVM
5.8 GHz	–48 dB typical, –48.5 dB typical-mean

WLAN IEEE802.11ac (Opt. 25)

Modulation formats	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Measurements and displays	Burst index, Burst power, Peak to average burst power, IQ origin offset, Frequency error, Common pilot error, Symbol clock error RMS and Peak EVM for Pilots/Data, Peak EVM located per symbol and subcarrier Packet header format information Average power and RMS EVM per section of the header WLAN power vs time, WLAN symbol table, WLAN constellation Spectrum emission mask, spurious Error vector magnitude (EVM) vs symbol (or time), vs subcarrier (or frequency) Mag error vs symbol (or time), vs subcarrier (or frequency) Phase error vs symbol (or time), vs subcarrier (or frequency) WLAN channel frequency response vs symbol (or time), vs subcarrier (or frequency) WLAN spectral flatness vs symbol (or time), vs subcarrier (or frequency)
Residual EVM - 802.11ac	RMS-EVM averaged over 20 bursts, 16 symbols each Signal input power optimized for best EVM
5.8 GHz (80 MHz, 256-QAM)	–48 dB typical, –48.5 dB typical-mean
5.8 GHz (160 MHz, 256-QAM)	–45 dB typical, –45.5 dB typical-mean

APCO P25 (Option 26)

Modulation formats	Phase 1 (C4FM), Phase 2 (HCPM, HDQPSK)
Measurements and displays	RF output power, operating frequency accuracy, modulation emission spectrum, unwanted emissions spurious, adjacent channel power ratio, frequency deviation, modulation fidelity, frequency error, eye diagram, symbol table, symbol rate accuracy, transmitter power and encoder attack time, transmitter throughput delay, frequency deviation vs. time, power vs. time, transient frequency behavior, HCPM transmitter logical channel peak adjacent channel power ratio, HCPM transmitter logical channel off slot power, HCPM transmitter logical channel power envelope, HCPM transmitter logical channel time alignment
Residual modulation fidelity	
Phase 1 (C4FM)	≤1.0% typical
Phase 2 (HCPM)	≤0.5% typical
Phase 2 (HDQPSK)	≤0.4% typical
Adjacent channel power ratio ²⁹	
25 kHz offset from the center and bandwidth of 6 kHz	Phase 1 (C4FM): -74 dBc typical Phase 2 (HCPM): -74 dBc typical Phase 2 (HDQPSK): -75 dBc typical
62.5 kHz offset from the center and bandwidth of 6 kHz	-75 dBc typical
RF field strength and mapping	
RF field strength	
Signal strength indicator	Located at right-side of display
Measurement bandwidth	Up to 165 MHz, dependent on span and RBW setting
Tone type	Variable frequency
Mapping	
Map types directly supported	Pitney Bowes MapInfo (*.mif), Bitmap (*.bmp)
Saved measurement results	Measurement data files (exported results) Map file used for the measurements Google earth KMZ file Recallable results files (trace and setup files) MapInfo-compatible MIF/MID files

²⁹ Measured with test signal amplitude adjusted for optimum performance if necessary. Measured with Averaging, 10 waveforms.

Analog modulation analysis accuracy (typical)

AM	±2% (0 dBm input at center, carrier frequency 1 GHz, 10 to 60% modulation depth)
FM	±1% of span (0 dBm input at center) (Carrier frequency 1 GHz, 400 Hz/1 kHz Input/Modulated frequency)
PM	±3° (0 dBm input at center) (Carrier frequency 1 GHz, 1 kHz/5 kHz Input/Modulated frequency)

Inputs and outputs

Front panel

Display	Touch panel, 10.4 in. (264 mm)
RF input connector	N-type female, 50 Ω
Trigger out	BNC, High: >2.0 V, Low: <0.4 V, Output current 1 mA (LV TTL)
Trigger in	BNC, 50 Ω/5 kΩ impedance (nominal), ±5 V max input, -2.5 V to +2.5 V trigger level
USB ports	(2) USB 2.0
Audio	Speaker

Rear panel

10 MHz REF OUT	50 Ω, BNC, >0 dBm
External REF IN	50 Ω, 10 MHz, BNC
Trig 2 / gate IN	BNC, High: 1.6 to 5.0 V, Low: 0 to 0.5 V
GPIB interface	IEEE 488.2
LAN interface ethernet	RJ45, 10/100/1000BASE-T
USB ports	(2) USB 2.0
VGA output	VGA compatible, 15 DSUB
Audio out	3.5 mm headphone jack
Noise source drive	BNC, +28 V, 140 mA (nominal) Turn ON time: 100 μs, Turn OFF time: 500 μs
Digital I and Q out	2 connectors, LVDS (Opt. 65)
Analog Zero Span Out	1 connector, BNC (Opt. 66)

General operating characteristics

Temperature range

Operating	+5 °C to +40 °C
Storage	-20 °C to +60 °C

Warm-up time	20 minutes
--------------	------------

Altitude

Operating	Up to 3000 m (approximately 10,000 ft.)
Nonoperating	Up to 12,190 m (40,000 ft.)

Relative humidity

Operating and nonoperating	+40 °C at 95% relative humidity, meets intent of EN 60068-2-30. ³⁰
----------------------------	---

General operating characteristics

Vibration

Operating (except when equipped with option 56 removable SSD)	0.22G _{RMS} . Profile = 0.00010 g ² /Hz at 5-350 Hz, -3 dB/Octave slope from 350-500 Hz, 0.00007 g ² /Hz at 500 Hz, 3 Axes at 10 min/axis
Nonoperating	2.28G _{RMS} . Profile = 0.0175 g ² /Hz at 5-100 Hz, -3 dB/Octave slope from 100-200 Hz, 0.00875 g ² /Hz at 200-350 Hz, -3 dB/Octave slope from 350-500 Hz, 0.006132 g ² /Hz at 500 Hz, 3 Axes at 10 min/axis

Shock

Operating	15 G, half-sine, 11 ms duration, three shocks per axis in each direction (18 shocks total)
Nonoperating	30 G, half-sine, 11 ms duration, three shocks per axis in each direction (18 shocks total)

Data storage	USB ports, removable SSD, Internal HDD (Opt. 59)
---------------------	--

Calibration interval	One year
-----------------------------	----------

GPIB	SCPI-compatible, IEEE488.2 compliant
-------------	--------------------------------------

Power

Power requirements	90 V _{AC} to 264 V _{AC} , 50 Hz to 60 Hz 90 V _{AC} to 132 V _{AC} , 400 Hz
---------------------------	--

Power consumption	400 W max
--------------------------	-----------

EMC and safety compliance

Safety	UL 61010-1:2004 CSA C22.2 No.61010-1-04
---------------	--

Electromagnetic compatibility, complies with	EU council EMC Directive 2004/108/EC EN61326, CISPR 11, Class A ACMA (Australia/New Zealand) FCC 47CFR, Part 15, Subpart B, Class A (USA)
---	--

Dimensions (with feet)

Height	282 mm (11.1 in.)
Width	473 mm (18.6 in.)
Depth	531 mm (20.9 in.)

Weight (with all options)	24.6 kg (54 lb)
----------------------------------	-----------------

³⁰ Frequency amplitude response may vary up to ± 3 dB at $+40^{\circ}\text{C}$ and greater than 45% relative humidity.

Ordering information

Models

SPECMON3B	Real Time Signal Analyzer, 1 Hz to 3 GHz
SPECMON6B	Real Time Signal Analyzer, 1 Hz to 6.2 GHz
SPECMON26B	Real Time Signal Analyzer, 1 Hz to 26.5 GHz

All Include: Quick-start Manual (Printed), Application Guide (Printed), Product Documentation CD, power cord, BNC-N adapter, USB Keyboard, USB Mouse, Front Cover

SPECMON26B also includes: Planar Crown RF Input Connector - 3.5 mm Female

Note: Please specify power plug and language options when ordering.

Warranty

Three years

Options, accessories, and upgrades

Options

Product	Options	Description
SPECMON3B		Real Time Signal Analyzer, 1 Hz to 3 GHz, 25 MHz Acquisition Bandwidth
SPECMON6B		Real Time Signal Analyzer, 1 Hz to 6.2 GHz, 40 MHz Acquisition Bandwidth
SPECMON26B		Real Time Signal Analyzer, 1 Hz to 26.5 GHz, 40 MHz Acquisition Bandwidth
	Opt. B40	40 MHz Acquisition Bandwidth (SPECMON3B Only)
	Opt. B85	85 MHz Acquisition Bandwidth
	Opt. B16x	165 MHz Acquisition Bandwidth
	Opt. 09	Enhanced Real Time
	Opt. 10	AM/FM/PM Modulation and Audio Measurements
	Opt. 11	Phase Noise / Jitter Measurement
	Opt. 12	Settling Time (Frequency and Phase)
	Opt. 14	Noise Figure and Gain
	Opt. 21	General Purpose Modulation Analysis
	Opt. 22	Flexible OFDM Analysis
	Opt. 23	WLAN 802.11a/b/g/j/p measurement application
	Opt. 24	WLAN 802.11n measurement application (requires opt 23)
	Opt. 25	WLAN 802.11ac measurement application (requires opt 24)
	Opt. 26	APCO P25 measurement application
	Opt. 53	Memory Extension, 4 GB Acquisition Memory Total
	Opt. 65	Digital I and Q outputs
	Opt. 66	Zero-span analog output
	Opt. 6566	Digital I and Q outputs and Zero-span analog output

International power plugs

Opt. A0	North America power plug (115 V, 60 Hz)
Opt. A1	Universal Euro power plug (220 V, 50 Hz)
Opt. A2	United Kingdom power plug (240 V, 50 Hz)
Opt. A3	Australia power plug (240 V, 50 Hz)
Opt. A4	North America power plug (240 V, 50 Hz)
Opt. A5	Switzerland power plug (220 V, 50 Hz)
Opt. A6	Japan power plug (100 V, 50/60 Hz)
Opt. A10	China power plug (50 Hz)
Opt. A11	India power plug (50 Hz)
Opt. A12	Brazil power plug (60 Hz)
Opt. A99	No power cord

Language options

Opt. L0	English manual
Opt. L5	Japanese manual
Opt. L7	Simplified Chinese manual
Opt. L10	Russian manual

Service options

Opt. C3	Calibration Service 3 Years
Opt. C5	Calibration Service 5 Years
Opt. CA1	Single Calibration or Functional Verification
Opt. D1	Calibration Data Report
Opt. D3	Calibration Data Report 3 Years (with Opt. C3)
Opt. D5	Calibration Data Report 5 Years (with Opt. C5)
Opt. G3	Complete Care 3 Years (includes loaner, scheduled calibration, and more)
Opt. G5	Complete Care 5 Years (includes loaner, scheduled calibration, and more)
Opt. R5	Repair Service 5 Years (including warranty)

Recommended accessories

Accessory	Description
RTPA2A Spectrum Analyzer Probe Adapter compatibility	Supports TekConnect® probes. P7225 - 2.5 GHz Active Probe, P7240 - 4 GHz Active Probe, P7260 - 6 GHz Active Probe, P7330 - 3.5 GHz Differential Probe, P7350 - 5 GHz Differential Probe, P7350SMA - 5 GHz Differential SMA Probe, P7340A - 4 GHz Z-Active Differential Probe, P7360A - 6 GHz Z-Active Differential Probe, P7380A - 8 GHz Z-Active Differential Probe, P7380SMA - 8 GHz Differential Signal Acquisition System, P7313 - >12.5 GHz Z-Active Differential Probe, P7313SMA - 13 GHz Differential SMA Probe, P7500 Series - 4 GHz to 20 GHz TriMode Probes
RSAVu	Software based on the RSA3000 Series platform for analysis supporting 3G wireless standards, WLAN (IEEE802.11a/b/g/n), RFID, Audio Demodulation, and more measurements.
SignalVu-PC	Software based on the RSA5000/6000 Series Real Time Signal Analyzers puts the power of your RTSA signal analysis tools on your Windows XP or Windows 7 PC. Performs measurements on stored signals from RSA3/5/6K series, SPECMON Series, MDO oscilloscope RF captures.
E and H Near-field Probes	For EMI troubleshooting. 119-4146-xx
Additional Removable Hard Drive	Order SPECMONBUP Opt. SSD. This is an additional solid-state drive. (Windows 7 and instrument software preinstalled.)
Transit Case	016-2026-xx
Rackmount Retrofit	RSA56KR
Additional Quick-start Manual (Paper)	071-3229-xx
Noise source	NoiseCom NC346C Series. Provides supported sources up to 55 GHz in a variety of connector types and ENR values. Contact NoiseCom for full information and to order: http://noisecom.com
600 Ω BNC pass-through	Required for higher-speed noise figure measurements when ordering SPECMONUP Opt 14 for SPECMON. POMONA 4119-600 RF. Not needed for SPECMONB. COAXIAL ADAPTER, BNC PLUG-BNC JACK. Contact Pomona Electronics and distributors worldwide to order: http://pomonaelectronics.com

Upgrades

Upgrade options for SPECMONB series

SPECMONBUP	Option description	HW or SW	Factory calibration required?
Opt. 53	Memory Extension, 4 GB Acquisition Memory Total	HW	No
Opt. 65	Digital I and Q Outputs	HW	No
Opt. 66	Zero-span analog output	HW	No
Opt. 6566	Digital I and Q outputs and Zero-span analog output	HW	No
Opt. 09	Enhanced Real Time	SW	No
Opt. 10	AM/FM/PM Modulation and Audio Measurements	SW	No
Opt. 11	Phase Noise / Jitter Measurements	SW	No
Opt. 12	Settling Time (Frequency and Phase)	SW	No
Opt. 14	Noise Figure and Gain (Internal preamp recommended)	SW	No
Opt. 21	General Purpose Modulation Analysis	SW	No
Opt. 22	Flexible OFDM Analysis	SW	No
Opt. 23	WLAN 802.11a/b/g/j/p measurement application	SW	No
Opt. 24	WLAN 802.11n measurement application (requires Opt. 23)	SW	No
Opt. 25	WLAN 802.11ac measurement application (requires Opt. 24)	SW	No
Opt. 26	APCO P25 measurement application	SW	No
Opt. B40	40 MHz Acquisition Bandwidth (from 25 MHz), SPECMON3B only	SW	No
Opt. B85	85 MHz Acquisition Bandwidth (from 25 MHz)	HW	Yes
Opt. B16x	165 MHz Acquisition Bandwidth (from 25 MHz)	SW	No

Datasheet

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

ASEAN / Australasia (65) 6356 3900
Belgium 00800 2255 4835*
Central East Europe and the Baltics +41 52 675 3777
Finland +41 52 675 3777
Hong Kong 400 820 5835
Japan 81 (3) 6714 3010
Middle East, Asia, and North Africa +41 52 675 3777
People's Republic of China 400 820 5835
Republic of Korea 001 800 8255 2835
Spain 00800 2255 4835*
Taiwan 886 (2) 2722 9622

Austria 00800 2255 4835*
Brazil +55 (11) 3759 7627
Central Europe & Greece +41 52 675 3777
France 00800 2255 4835*
India 000 800 650 1835
Luxembourg +41 52 675 3777
The Netherlands 00800 2255 4835*
Poland +41 52 675 3777
Russia & CIS +7 (495) 6647564
Sweden 00800 2255 4835*
United Kingdom & Ireland 00800 2255 4835*

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Canada 1 800 833 9200
Denmark +45 80 88 1401
Germany 00800 2255 4835*
Italy 00800 2255 4835*
Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90
Norway 800 16098
Portugal 80 08 12370
South Africa +41 52 675 3777
Switzerland 00800 2255 4835*
USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

Updated 10 April 2013

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com.

Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

06 Aug 2014

37W-28248-4

www.tektronix.com

Tektronix®