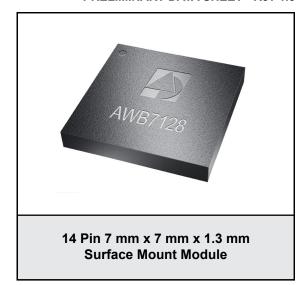
AWB7128


2.545 GHz through 2.69 GHz Small-Cell Power Amplifier Module PRELIMINARY DATA SHEET - Rev 1.5

FEATURES

- · InGaP HBT Technology
- -47 dBc ACPR @ ± 10 MHz, +24.5 dBm
- 28 dB Gain
- · High Efficiency
- · Low Transistor Junction Temperature
- Internally matched for a 50 Ω System
- Low Profile Miniature Surface Mount Package; Halogen Free and RoHS Compliant
- Multi-Carrier Capability

APPLICATIONS

- WCDMA, HSDPA and LTE Air Interfaces
- FDD and TDD Systems
- · Picocell, Femtocell, Home Nodes
- Customer Premises Equipment (CPE)
- Data Cards and Terminals

PRODUCT DESCRIPTION

The AWB7128 is a highly linear, fully matched, power amplifier module designed for picocell, femtocell, and customer premises equipment (CPE) applications. Its high power efficiency and low adjacent channel power levels meet the extremely demanding needs of small cell infrastructure architectures. Designed for WCDMA, HSDPA and LTE air interfaces operating in the 2.545 GHz to 2.69 GHz band, the AWB7128 delivers up to +24.5 dBm of LTE (E-TM1.1) power with

an ACPR of -47 dBc. It operates from a convenient +4.2 V supply and provides 28 dB of gain. The device is manufactured using an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. The self-contained 7 mm x 7 mm x 1.3 mm surface mount package incorporates RF matching networks optimized for output power, efficiency, and linearity in a 50 Ω system.

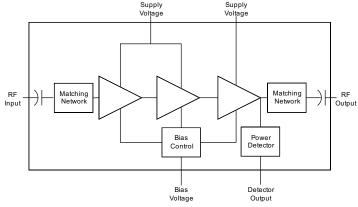


Figure 1: Block Diagram

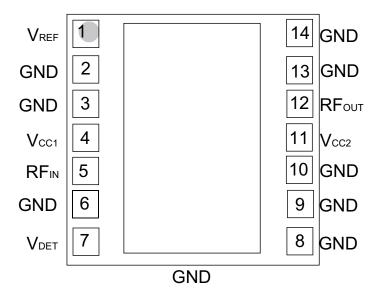


Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION
1	V_{REF}	Reference Voltage
2	GND	Ground
3	GND	Ground
4	V _{CC1}	Supply Voltage
5	RFℕ	RF Input
6	GND	Ground
7	V _{DET}	Detector Voltage
8	GND	Ground
9	GND	Ground
10	GND	Ground
11	V _{CC2}	Supply Voltage
12	RFout	RF Output
13	GND	Ground
14	GND	Ground

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (Vcc)	0	+5	V
Reference Voltage (VREF)	0	+3.5	٧
RF Output Power (Роит)	-	+28	dBm, modulated
RF Input Power (PIN)	-	+10	dBm, CW
ESD Rating Human Body Model ⁽¹⁾ Charged Device Model ⁽²⁾	Class 1C Class IV	-	
MSL Rating (3)	4	-	
Junction Temperature (TJ)	-	+150	°C
Storage Temperature (Tstg)	-40	+150	°C

Functional operation is not implied under these conditions. Exceeding any one or a combination of the Absolute Maximum Rating Conditions may cause permanent damage to the device. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Notes:

- (1) JEDEC JS-001-2010.
- (2) JEDEC JESD22-C101D.
- (3) 260 °C peak reflow.

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Operating Frequency (f)	2545	1	2690	MHz	
Supply Voltage (Vcc)	+3.2	+4.2	+4.5	V	
Reference Voltage (VREF)	+2.80 0	+2.85 -	+2.90 +0.5	٧	PA "on" PA "shut down"
RF Output Power (Pout) (1)	-	+24.5	-	dBm	
Case Temperature (Tc) (2)	-40	-	+85	°C	

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

⁽¹⁾ Typ RF Output Power is used during production test.

⁽²⁾ Case Temperature references the board temperature at the ground paddle on the backside of the package.

Table 4: Electrical Specifications (Tc = +25 °C, Vcc = +4.2 V, VREF = +2.85 V, 50 Ω system)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain ⁽²⁾	26	28	33	dB	
ACPR (1), (2), (3) @ 10 MHz @ 20 MHz	- -	-47 -58	-45 -54	dBc	
Power-Added Efficiency (1), (2), (3)	13.5	16	-	%	
Thermal Resistance (RJC)	-	24	-	°C/W	Junction to Case
Supply Current (1), (2), (3)	-	420	1	mA	total through Vcc pins
Quiescent Current (Icq)	-	160	175	mA	
Reference Current	-	8	11	mA	through VREF pin
Leakage Current	-	1.5	5	μΑ	Vcc = +4.5 V, VREF = 0 V
Harmonics 2fo 3fo, 4fo	- -	-52 -60	-46 -50	dBc	
Input Return Loss	9	13	-	dB	
P1dB	-	+30.5	-	dBm	CW tone
RF Switching Time ⁽⁴⁾ Rise Time (PA "off" to "on") Fall Time (PA "on" to "off")	-	-	12 4	μS	V _{CC} = +4.2, V _{REF} switched between 0 V and +2.85 V
Spurious Output Level (all spurious outputs)	-	-	-60	dBc	Pout ≤ +24.5 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all voltage and temperature operating ranges
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Vcc = +4.2 V, P _{IN} = 0 dBm Applies over full operating temperature range

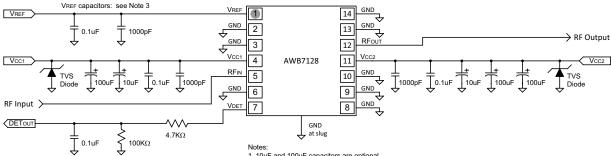
Notes:

⁽¹⁾ Measured at 2620 MHz.

⁽²⁾ $P_{OUT} = +24.5 \text{ dBm}.$

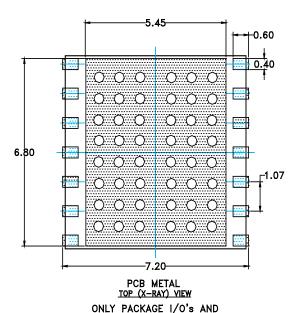
⁽³⁾ E-TM1.1 LTE 10 MHz BW.

⁽⁴⁾ Rise Time defined from time at which VREF is switched from 0 V to +2.85 V, to time at which the RF output power achieves 90% of the average steady-state "on" level; Fall Time defined from time at which VREF is switched from +2.85 V to 0 V, to time at which the RF output power decreases to 10% of the average steady-state "on" level.


AWB7128

APPLICATION INFORMATION

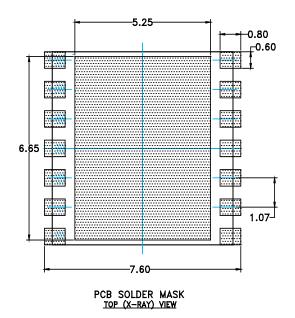
To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com


Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the VREF voltage.

- 1. 10uF and 100uF capacitors are optional.
- 2. Applications that have large supply voltage transients may benefit from the use of TVS diodes. For such applications, recommended TVS diodes are SM05T1G or SMJ5.0A.
- 3. To achieve the RF Switching Time specifications listed in Table 4, the maximum recommended capacitance on the V_{REF} line is $0.01 \mu F.$ The noise on the V_{REF} line should be kept as low as possible to minimize required capacitance.

Figure 3: Application Circuit Schematic



GROUND REQUIRÉMENTS

SHOWN.

NOTES:

- (1) UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES SHOWN.
- (2) DIMENSIONS IN MILLIMETERS.
- (3) VIAS SHOWN IN PCB METAL VIEW ARE FOR REFERENCE ONLY.
 NUMBER & SIZE OF THERMAL VIAS REQUIRED DEPENDENT ON HEAT DISSIPATION REQUIREMENT AND THE PCB PROCESS CAPABILITY.

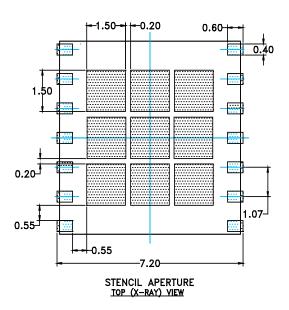
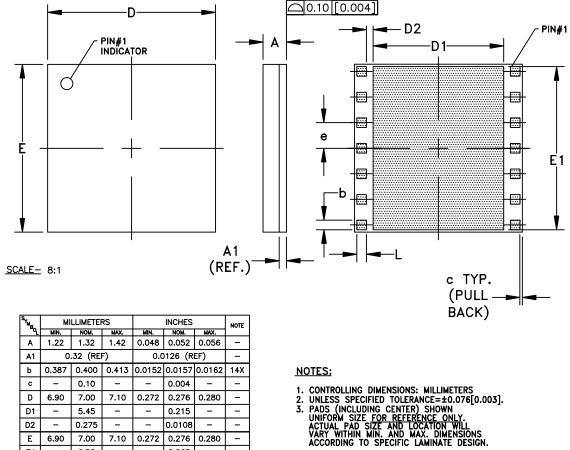



Figure 4: PCB Footprint

PACKAGE OUTLINE

0.272 6.80 0.268 1.07 0.0421 6X 0.400 | 0.413 | 0.0152 | 0.0157 | 0.0162 | 14X 0.387

0.276

0.280

_

Figure 5: Package Outline - 14 Pin 7 mm x 7 mm x 1.3 mm Surface Mount Module

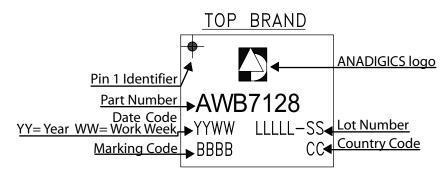


Figure 6: Branding Specification

Ε

E1

е

6.90

7.00

7.10

COMPONENT PACKAGING

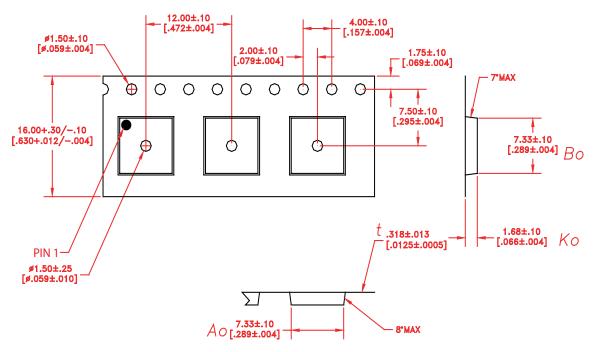


Figure 7: Tape & Reel Packaging

Table 5: Tape & Reel Dimensions

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
7 mm x 7 mm x 1.3 mm	16 mm	12 mm	2500	13"

AWB7128

ORDERING INFORMATION

ORDER	TEMPERATURE	PACKAGE	COMPONENT PACKAGING
NUMBER	RANGE	DESCRIPTION	
AWB7128P8	-40 °C to +85 °C	Halogen Free RoHS-compliant 14 Pin 7 mm x 7 mm x 1.3 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel

ANADIGICS

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

