

Preliminary

Rad-Hard Solid State SPST Latching Relay

Manufactured in a Certified Class-K Facility

Features

- 100 V Breakdown Voltage (N.O. contact)
- 1 Amp Design
- Neutron Fluence Level >1.8E12 n/cm²
- Optically Coupled
- Total Dose Capability >100 Krad (Si)
- >1,000 VDC Input to Output Isolation
- Buffered Input Stage
- 3.3 V Compatible Logic Level Input
- AC version available (higher "on" resistance)

Description

The AP10N01L is a radiation hardened SPST normally open solid-state latching relay in a hermetic package. It is configured as one contact which is open in the "reset state," and closed in the "set" state. This device is characterized for >100 Krad (Si) total ionizing dose, and neutron fluence level of >1.8E12 n/cm². The output FETs utilize advanced technology, and the device is actuated by standard inputs (i.e. 3.3 V and higher logic levels).

Table 1 – Absolute Maximum Ratings (Tc = +25°C Unless Otherwise Noted)

(Exceeding maximum ratings may damage the device.)

Symbol	Parameters / Test Conditions (Notes Page 3)	Value	Unit
V _S	Output N.O. Switch Voltage (5)	100	V
I _o	Output N.O. Switch Current (4) (5)	1	А
V _S	Output N.C. Switch Voltage (5)	N/A	V
I _o	Output N.C. Switch Current (4) (5)	N/A	А
V _{set or reset}	Input Actuation Voltage (Pin 1 & 3) (3)	48	V
V _{set or reset}	Input Actuation Current	2.5	mA
V _R	Input Supply Voltage (Pin 6) (7)	40	V
I_{R}	Input Supply Current (7)	12	mA
P _{DISS}	Power Dissipation (4) (5)	2.5	W
T _J	Operating Temperature Range	-55 to +125	°C
T _S	Storage Temperature Range	-65 to +150	°C
T _L	Lead Temperature	300	°C

Table 2 – General Characteristics per Channel @ -55° C < TC < $+125^{\circ}$ C

(Unless Otherwise Specified)

Parameter	Group A Subgroups	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Input Latch Threshold Voltage (1) (3)		$V_{R} = 12 \text{ V, I}_{O} = 1 \text{ A}$	V _{IN(TH)}	-		2.5	V
Input-to-Output Leakage Current (1)		$V_{I-O} = 1.0$ KVdc, dwell = 5.0s $T_C = 25$ °C	I _{I-O}			1.0	mA
Output Capacitance (1)		$V_{IN} = 0.1V$, $f = 1.0MHz$, $V_S = 25V$, $T_C = 25^{\circ}C$	C _{oss}		110		pF
Thermal Resistance (1)		$V_{IN} = 3.3V$, $V_{DD} = 5.0V$ ^(1, 4)	R _{THJC}			20	°C/W
MTBF (Per Channel)		MIL-HDBK-217F, SF@Tc= 25°C		6.0			MHrs
Weight			W			25	grams

Table 3 – Pre-Irradiation Electrical Characteristics per Channel

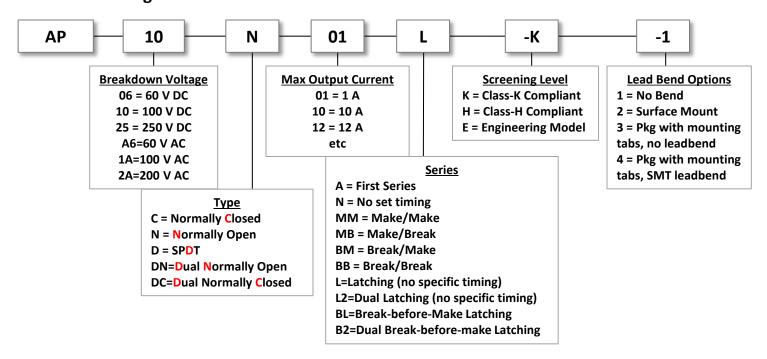
@ -55°C < TC < +125°C (Unless Otherwise Specified)

Parameter	Group A Subgroups	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output On Basistanas	1	V _R = 12 V				0.8	
Output On-Resistance	2	I _o = 1A R	R _{DS(ON)}			1.6	Ohms
Outrout Lookage Comment	1	V _S = 100V				25	
Output Leakage Current N.O. output	2	V _S = 80V	I _o			250	uA
		V _R = 12.0V			6	15	
Input Supply Current	1, 2, 3		I _{DD}				mA
	1					1.0	
Input Set/Reset Current	2, 3	V _{in} = 10V	I _{IN}			1.5	mA
Turn-On Delay ⁽⁶⁾	1, 2, 3	$V_{IN} = 3.3V, V_{R} = 12V, V_{S} = 50V$ $R_{L} = 5\Omega, P.W. = 50ms$	ton			TBD	
Turn-Off Delay ⁽⁶⁾	1, 2, 3	$V_{IN} = 0.1V, V_{R} = 12V, V_{S} = 50V$ $R_{L} = 5\Omega, P.W. = 50ms$	toff			TBD	- mS
Rise Time (2)(6)	1, 2, 3	$V_{IN} = 3.3V, V_{R} = 12V, V_{S} = 50V$ $R_{L} = 5\Omega, P.W. = 50ms$	tr			TBD	1113
Fall Time (2) (6)	1, 2, 3	$V_{IN} = 0.1V, V_{DD} = 12V, V_{S} = 50V$ $R_{L} = 5\Omega, P.W. = 50ms$	tf			TBD	

Table 4 – Post Total Dose Irradiation ^(8, 9) Electrical Characteristics per Channel @ 25°C (unless otherwise specified)

Parameter	Group A Subgroups	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output On-Resistance	1	V _R = 12 V, I _O = 1 A	R _{DS(ON)}			1	Ohms
Input Supply Current	1	V _R = 12V	I _{DD}		10	15	mA
Output Leakage Current	1	V _R = 0.1V, V _S = 100V	Io			25	
Input Set/Reset Current	1	V _{IN} = 10V	I _{IN}			1.2	mA
Turn-On Delay ⁽⁶⁾	1	$V_{IN} = 3.3V, V_{DD} = 5.0V, V_{S} = 50V$ $R_{L} = 5W, P_{W} = 50ms$	ton			TBD	
Turn-Off Delay ⁽⁶⁾	1	$V_{IN} = 0.1V, V_{DD} = 5.0V, V_{S} = 50V$ $R_{L} = 5W, P_{W} = 50ms$	toff			TBD	
Rise Time ^{(2) (6)}	1	$V_{IN} = 3.3V, V_{DD} = 5.0V, V_{S} = 50V$ $R_{L} = 5W, P.W. = 50ms$	tr			TBD	ms
Fall Time ^{(2) (6)}	1	$V_{IN} = 0.1V$, $V_{DD} = 5.0V$, $V_{S} = 50V$ $R_{L} = 5W$, P.W. = 50ms	tf			TBD	

Notes for Maximum Ratings and Electrical Characteristic Tables


- 1. Specification is guaranteed by design.
- 2. Rise and fall times are controlled internally.
- 3. Set and Reset inputs protected for $V_{IN} > -10 \text{ V}$ to < +48 V.
- 4. Optically coupled Solid State Relays (in reality a FET with isolated Gate drive) have relatively slow turn on and turn off times. Care must be taken to insure that transient currents during these times do not cause violation of SOA limits for the particular switch used. If transient conditions are present, we recommend that a complete simulation be performed by the end user to insure compliance with SOA requirements as specified in the data sheet of the applicable switching transistor.
- 5. While the SSR design meets the design requirements specified in MIL-PRF-38534, the end user is responsible for product derating, as required for the application.
- 6. Reference Figures 3 & 4 for Switching Test Circuits and Waveform; Output Voltage (V_O) of Figure 4, Switching Test Waveform, is representative of the Output FET Drain-to-Source Voltage.
- 7. Input Supply voltage shall not exceed 40 V.
- 8. Total Dose Irradiation takes place with an Input Voltage of 24 V applied and $V_{DS} = 80 \text{ V}$.
- 9. API Technologies' Marlborough Operations does not currently have a DLA certified Radiation Hardness Assurance Program.

Radiation Performance

API's Radiation Hardened Solid State Relays are tested to verify their hardness capability. The hardness assurance program uses a Cobalt-60 (60 Co) Source and heavy ion irradiation. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions to provide a direct comparison.

Preliminary

Table 5 - Ordering Information

Table 6 - Screening Options

	Screen	Mil-Std-883-		
Tests	Н	K	Method	
	Compliant- I	Compliant- MIL-PRF-38534		
100 % Non-Destruct Wire-Pull	Sample	100%	2023	
Pre-Cap Visual	N/A	100%	2017	
Temperature Cycle	100%	100%	1010	
Constant Acceleration	100%	100%	2001	
PIND	N/A	100%	2020	
Pre-Burn-In Electrical (Ta= 25C)	100%	100%		
Burn-In	100% (240 Hours)	100% (320 Hours)	1015	
Final Electrical	100%	100%	(6)	
Hermeticity (Fine & Gross Leak)	100%	100%	1014	
X-Ray ⁽⁵⁾	N/A	100%	2012	
External Visual	100%	100%	2009	

Preliminary Model # AP10N01L

Figure 1 - Maximum Drain Current vs. Case Temperature per Channel

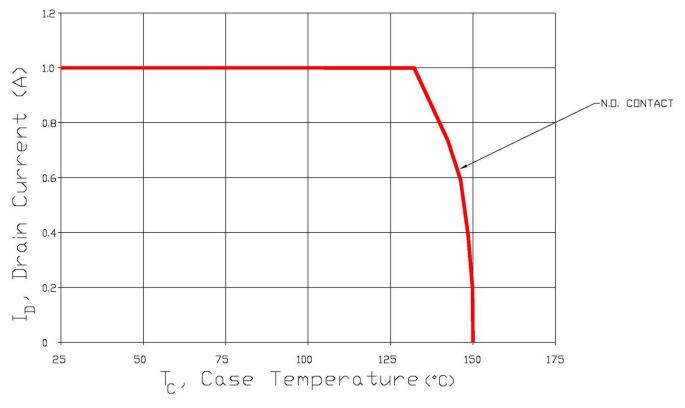
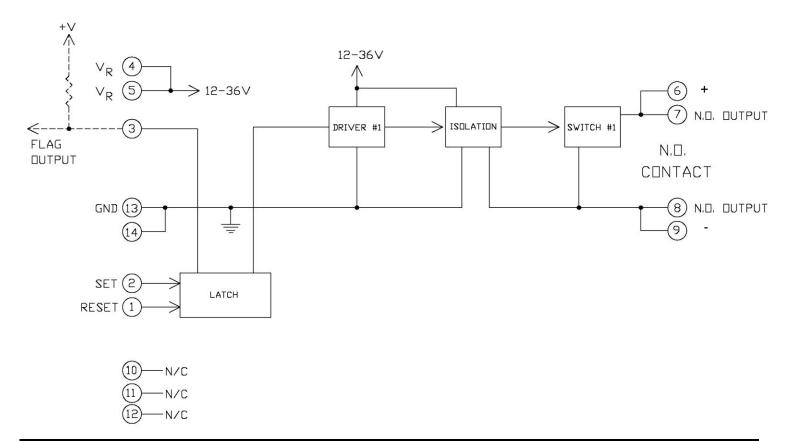



Figure 2 – Functional Block Diagram

Rev Date: 12/22/2014

Preliminary Model # AP10N01L

Figure 3 – Switching Test Circuit

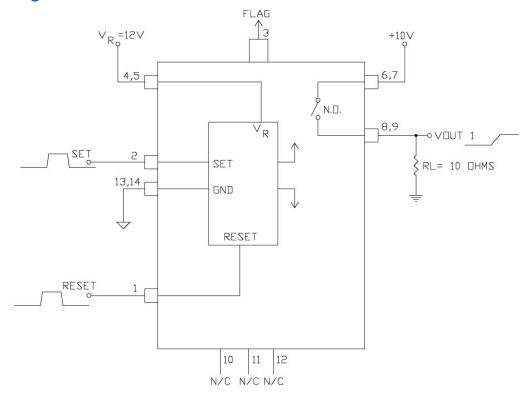
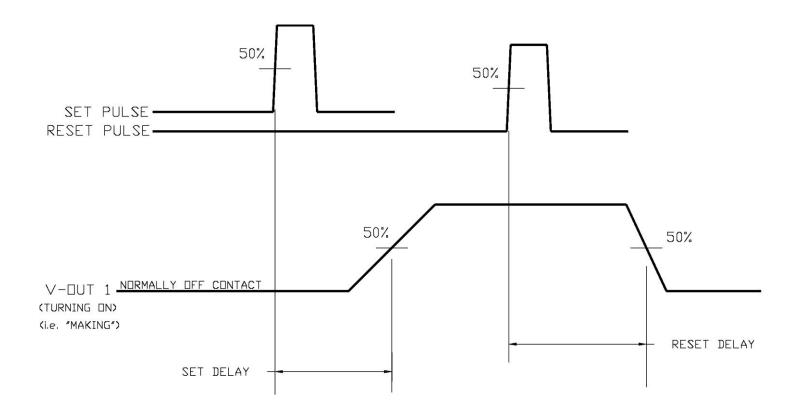



Figure 4 – Switching Test Waveform

Rev Date: 12/22/2014

Preliminary Model # AP10N01L

Figure 5 - Package, Dimensions, bottom view

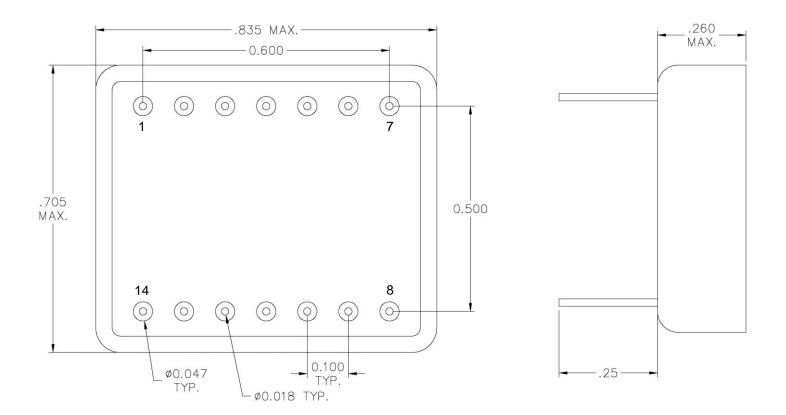


Figure 6 – Alternate Package, Dimensions

TBD

Rev Date: 12/22/2014

Table 7 – Pin Designations

Pin #	Pin Description
1	RESET
2	SET
3	FLAG
4	V _R
5	V _R
6	N.O. Switch (+)
7	N.O. Switch (+)
8	N.O. Switch (-)
9	N.O. Switch (-)
10	Not Connected
11	Not Connected
12	Not Connected
13	Power Return
14	Power Return

- 1.- Dimensioning and Telebanking per ASME Y14.53M-1994
- 2.- Controlling Dimension: Inch
- 3.- Dimensions are shown in inches
- 4.- Tolerances are +/-0.005 UOS
- 5.- Lead Dimensions are prior to Hot Solder Dip (if used)
- 6.- Lead finish per MIL-PRF-38534, Finish A, hot solder dip (Sn 63/Pb37) only on SMT lead bend option.
- 7.- For no leadbend, leads exit package as above and extend out 0.5" minimum.