

GRF2505

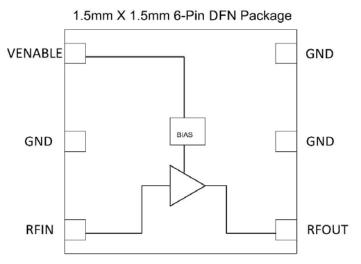
Linear PA Driver/Ultra-low Noise Amplifier; 4.0 - 6.0 GHz

Package: 6-Pin DFN

Features

- Broadband: 4.0 GHz to 6.0 GHz
- 0.80 dB Noise Figure at 5.5 GHz
- 13.2 dB gain, +33 dBm OIP3 and +20.5 dBm OP1dB at 5.5 GHz (5V/50 mA)
- Flexible Bias Voltage: 1.8 V to 5.0 V
- Adjustable Bias Current
- Internally Matched to 50 Ω
- Unconditionally Stable

Applications


- PA Driver for 5 GHz LTE Backhaul and 802.11a/n/ac
- Ultra-Low Noise Amplifier for 4 6 GHz Wireless Backhaul and 802.11a/n/ac
- Vehicle Information Systems
- Automated Toll Reader
- Low Voltage Transceivers

Product Description

The GRF2505 is a broadband, ultra-low noise, linear amplifier offering the highest levels of performance for demanding 802.11ac and wireless backhaul LNA and PA driver applications. This amplifier exhibits outstanding broadband NF, linearity and return losses over 4.0 to 6.0 GHz with a single match. It is operated from a single positive supply of 1.8 V to 5.0 V with a selectable Iddq range of 20 to 70 mA for optimal efficiency and linearity.

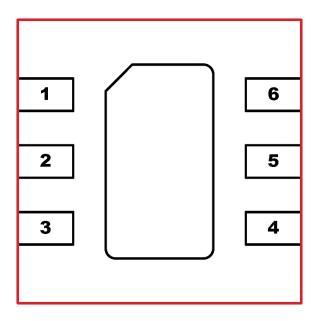
GRF2505 is housed in a 1.5 x 1.5 x 0.5 mm 6-pin plastic DFN package and is internally matched to 50 Ω at the input and output ports, requiring only 6 external RLC components.

Functional Block Diagram

Absolute Ratings

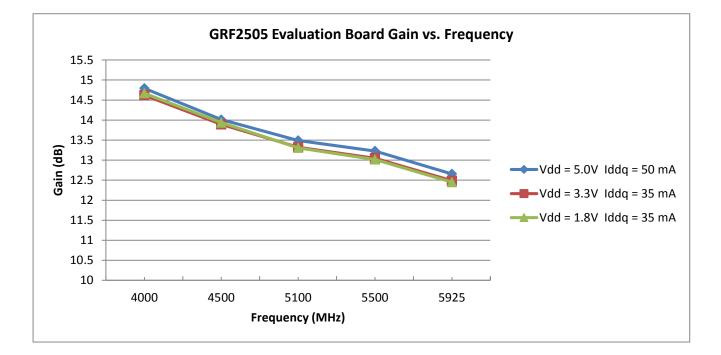
	0		
Symbol	Min.	Max.	Unit
Vd	0	6.0	V
PIN MAX		+15	dBm
Тамв	-40	+105	°C
T _{STG}	-40	+150	°C
TMAX		+160	°C
PDISS MAX		300	mW
CDM	Class 4: 1000		V
HBM	Class 1B: 500		V
MM	Class A: 50		V
	Vd Pin max Tamb Tstg Tmax Pdiss max CDM HBM	SymbolMin.Vd0PIN MAX-40TAMB-40TSTG-40TMAX-40PDISS MAX-40CDMClass 4: 1000HBMClass 1B: 500	Symbol Min. Max. Vd 0 6.0 PIN MAX +15 TAMB -40 +105 TSTG -40 +150 TMAX +160 +160 PDISS MAX 300

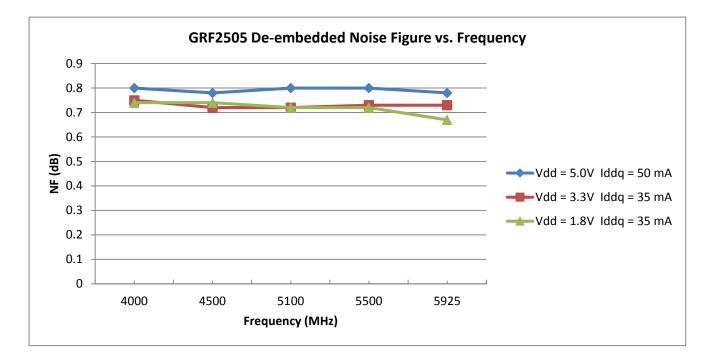
Caution! ESD Sensitive Device


Exceeding Absolute Maximum Rating conditions may cause permanent damage to the device.

Nominal Operating Parameters

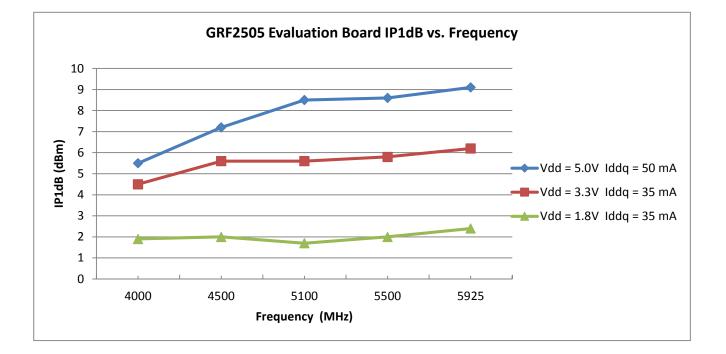
Parameter	Symbol	C,	Specificati	on	Unit	Condition		
Farameter	Symbol	Min.	. Typ. Max.		Unit	Condition		
Gain Mode (Venable high)						Vd = 5.0 V, T _A = 25°C		
Test Frequency	FTEST		5.5		GHz			
Gain	S21		13.2		dB			
Input Return Loss	S11		-15		dB			
Output Return Loss	S22		-20		dB			
Noise Figure	NF		0.80		dB	Input trace losses de-embedded		
Output 3rd Order Intercept	0IP3		+33		dBm			
Output 1dB Compression Power	OP1dB		+20.5		dBm			
Switching Rise Time	T _{RISE}		300		ns	No added capacitance on Venable line (M2 not needed)		
Switching Fall Time	T _{FALL}		300		ns	No added capacitance on Venable line (M2 not needed)		
Supply Current	I _{DD}		50		mA	Adjustable for optimal IP3		
Thermal Data								
Thermal Resistance: (Infra-Red Scan)	Θјс		225		°C/W	On standard Evaluation Board		
Channel Temperature @ +85 C Reference (Package heat sink)	Tchannel		+141		°C	Vdd: 5.0 V; Iddq: 50 mA; No RF; Pdiss: 250 mW		

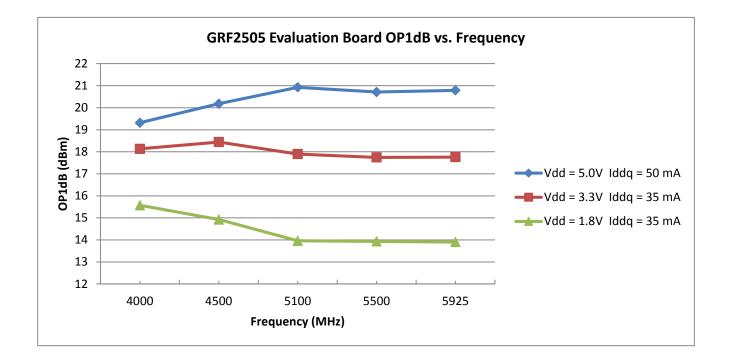




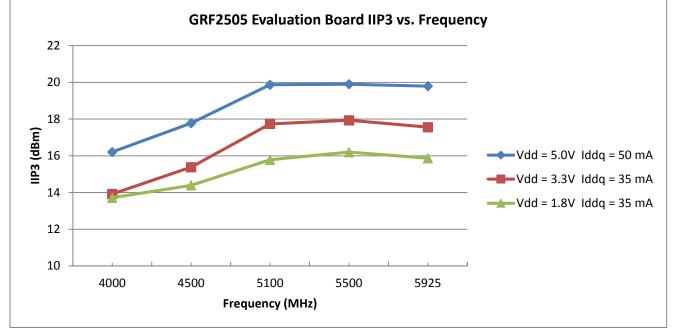
Pin Assignments

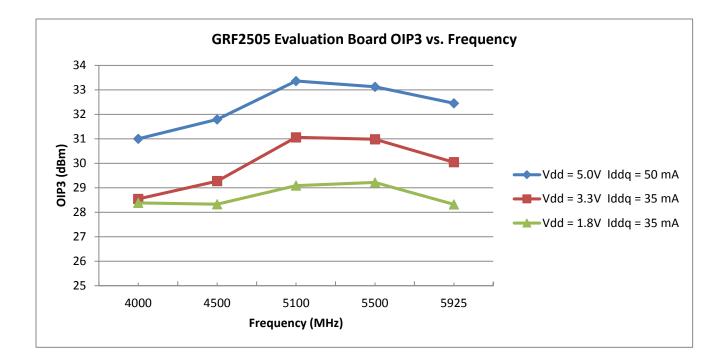
Pin	Name	Description	Note
1	Venable	Enable Voltage	Venable < 0.2 volts turns the device off. Venable and series resistor M3 control the device lddq.
2	GND	Ground	Connect to ground for maximum RF performance
3	RF_In	LNA RF input	Internally matched 50 Ω .
4	RF_Out	LNA RF output	Internally matched 50 Ω . V_{DD} must be applied through a choke to this pin
5	GND	Ground	Connect to ground for maximum RF performance
6	GND	Ground	Connect to ground for maximum RF performance
PKG BASE	GND	Ground	Provides DC and RF ground for LNA, as well as thermal heat sink. Use multiple ground vias beneath the package for optimal RF and thermal performance



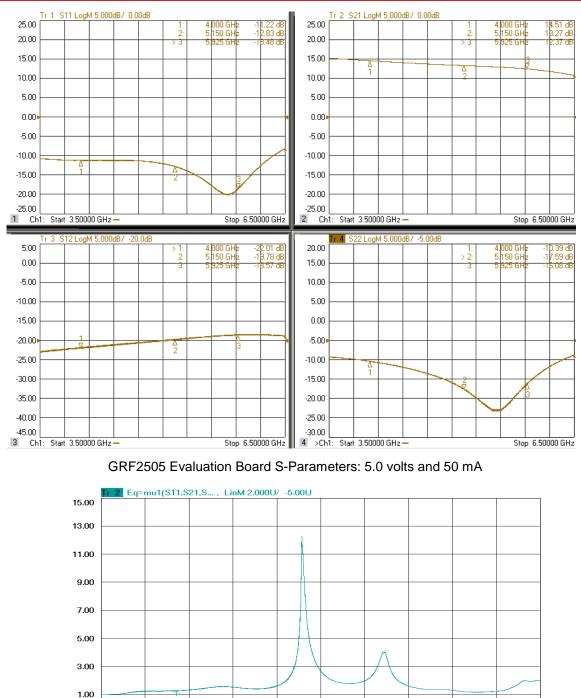


GRF2505





GRF2505



GRF2505

-1.00

-3.00 -5.00 _ 1

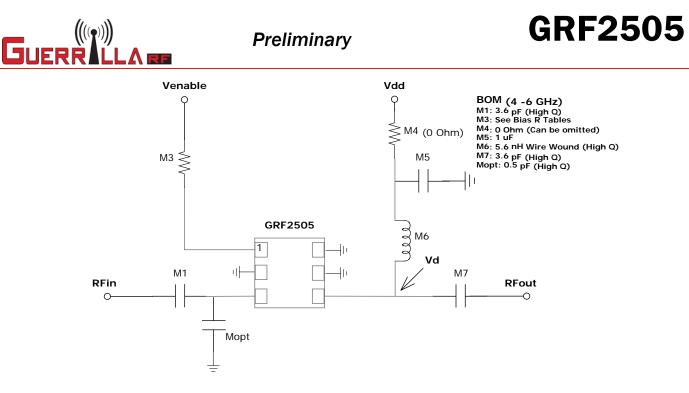
>Ch1: Start 10.0000 MHz ----

GRF2505 Evaluation Board Stability Mu Factor

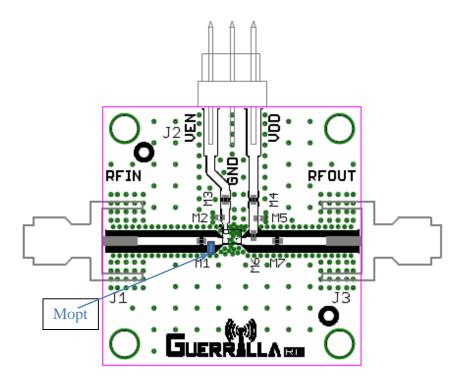
Stop 20.0000 GHz

GRF2505 Theory of Operation:

The GRF2505 is a single-stage, high-performance, low noise linear amplifier that is suitable for a wide range of applications. The device is internally matched to 50 ohms and covers 4 to 6 GHz with a single set of DC blocking caps (M1 and M7) and bias inductor (M6).

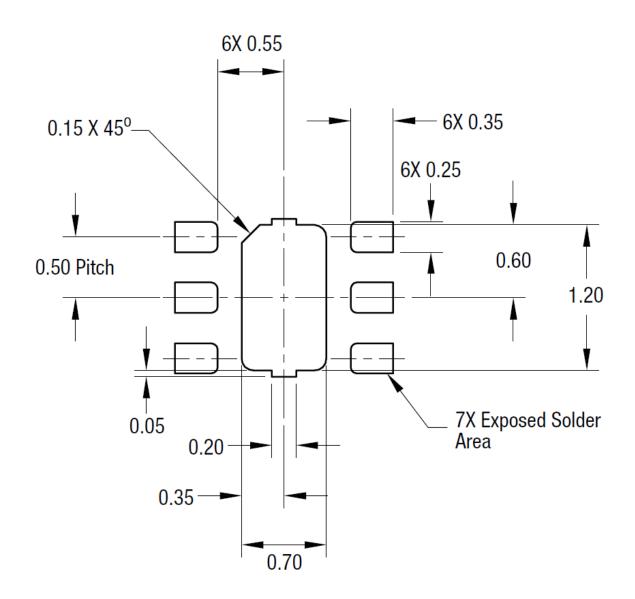

The device Iddq can be set independently from the Vdd via the resistor M3 in series with Venable. This allows the device to be optimized to meet a given linearity requirement with the highest possible efficiency. For a given Venable, increasing M3 will result in lower Iddq. As shown in the data sheet plots, GRF2505 exhibits excellent gain, NF and linearity over a wide range of Vdd values from 1.8 V up to 5.0 V.

The tables on the following page show bias resistor values for a wide range of Venable and Vdd settings. The GRF Applications Team sees no performance benefit from Iddq values greater than 70 mA.

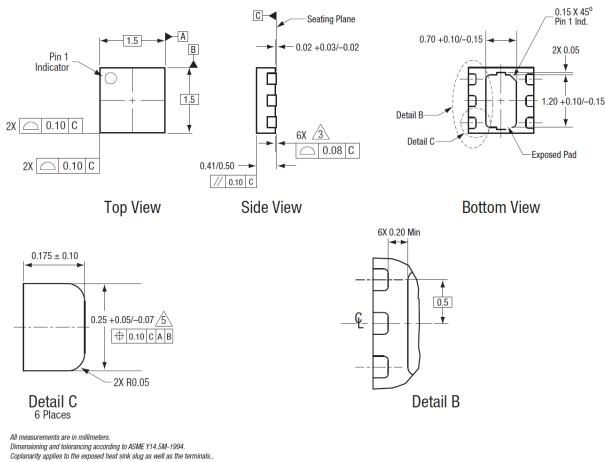


GRF2505 Bias Resistor vs. Iddq Tables

Device	Vdd	Venable	M3 (ohms)	lddq (mA)	Device	Vdd	Venable	M3 (ohms)	lddq (mA)	Device	Vdd	Venable	M3 (ohms)	lddq (mA)
GRF2505	5	5	500	80	GRF2505	4.5	4.5	300	80	GRF2505	4.0	4.0	100	81
GRF2505	5	5	750	72	GRF2505	4.5	4.5	400	76	GRF2505	4.0	4.0	300	70
GRF2505	5	5	1000	65	GRF2505	4.5	4.5	500	72	GRF2505	4.0	4.0	600	59
GRF2505	5	5	1500	56	GRF2505	4.5	4.5	750	64	GRF2505	4.0	4.0	1000	50
GRF2505	5	5	2000	49	GRF2505	4.5	4.5	1000	58	GRF2505	4.0	4.0	1500	42
GRF2505	5	5	2500	44	GRF2505	4.5	4.5	1500	50	GRF2505	4.0	4.0	2000	36
GRF2505	5	5	3000	40	GRF2505	4.5	4.5	2000	43	GRF2505	4.0	4.0	2500	32
GRF2505	5	5	4000	35	GRF2505	4.5	4.5	2500	39	GRF2505	4.0	4.0	3000	29
GRF2505	5	5	5000	31	GRF2505	4.5	4.5	3000	36	GRF2505	4.0	4.0	3500	27
GRF2505	5	5	6000	28	GRF2505	4.5	4.5	5000	27	GRF2505	4.0	4.0	4500	23
GRF2505	5	5	7000	25	GRF2505	4.5	4.5	6000	24	GRF2505	4.0	4.0	6000	19
GRF2505	5	5	10000	21	GRF2505	4.5	4.5	8000	20					
Device	Vdd	Venable	M3 (ohms)	Idda (mA)	Device	Vdd	Venable	M3 (ohms)	Idda (mA)	Device	Vdd	Venable	M3 (ohms)	Idda (mA)
GRF2505	3.3	3.3	0	74	GRF2505	3	3	0	67	GRF2505	1.8	1.8	0	35
GRF2505	3.3	3.3	100	68	GRF2505	3	3	100	61	GRF2505	1.8	1.8	100	32
GRF2505	3.3	3.3	200	63	GRF2505	3	3	200	57	GRF2505	1.8	1.8	200	30
GRF2505	3.3	3.3	300	59	GRF2505	3	3	300	53	GRF2505	1.8	1.8	400	26
GRF2505	3.3	3.3	500	53	GRF2505	3	3	500	47	GRF2505	1.8	1.8	600	23
GRF2505	3.3	3.3	750	46	GRF2505	3	3	750	42	GRF2505	1.8	1.8	900	20
GRF2505	3.3	3.3	1000	42	GRF2505	3	3	1000	38	0	2.0	1.0	300	
GRF2505	3.3	3.3	1500	35	GRF2505	3	3	1500	32					
GRF2505	3.3	3.3	2000	31	GRF2505	3	3	2000	27					
GRF2505	3.3	3.3	3000	25	GRF2505	3	3	3000	22					
GRF2505	3.3	3.3	4000	21	511 2000	2		2.500						


GRF2505 Evaluation Board Application Schematic

GRF2505 Evaluation Board Assembly Diagram



GRF2505 1.5 x 1.5mm 6-Pin DFN PCB Layout Footprint

Plating requirement per source control drawing (SCD) 2504.

Dimension applies to metalized terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.

GRF2505 6-Pin DFN Package Dimensions

Data Sheet Release Status:	Notes
Advance	S-parameter and NF data based on EM simulations for the fully packaged device using foundry supplied transistor s-parameters. Linearity estimates based on device size, bias condition and experience with related devices.
Preliminary	All data based on evaluation board measurements in the Guerrilla RF Applications Lab.
Released	All data based on device qualification data. Typically, this data is nearly identical to the data found in the preliminary version. Max and min values for key RF parameters are included.

Information in this datasheet is specific to the Guerrilla RF, LLC ("Guerrilla RF") product identified.

This datasheet, including the information contained in it, is provided by Guerrilla RF as a service to its customers and may be used for informational purposes only by the customer. Guerrilla RF assumes no responsibility for errors or omissions on this datasheet or the information contained herein. Information provided is believed to be accurate and reliable, however, no responsibility is assumed by Guerrilla RF for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. Guerrilla RF assumes no liability for any datasheet, datasheet, information, materials, products, product information, or other information provided hereunder, including the sale, distribution, reproduction or use of Guerrilla RF products, information or materials.

No license, whether express, implied, by estoppel, by implication or otherwise is granted by this datasheet for any intellectual property of Guerrilla RF, or any third party, including without limitation, patents, patent rights, copyrights, trademarks and trade secrets. All rights are reserved by Guerrilla RF.

All information herein, products, product information, datasheets, and datasheet information are subject to change and availability without notice. Guerrilla RF reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. Guerrilla RF may further change its datasheet, product information, documentation, products, services, specifications or product descriptions at any time, without notice. Guerrilla RF makes no commitment to update any materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

GUERRILLA RF INFORMATION, PRODUCTS, PRODUCT INFORMATION, DATASHEETS AND DATASHEET INFORMATION ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED, GUERRILLA RF DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHERIT TEMS CONTAINED WITHIN THESE MATERIALS, GUERRILLA RF SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are solely responsible for their use of Guerrilla RF products in the Customer's products and applications or in ways which deviate from Guerrilla RF's published specifications, either intentionally or as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Guerrilla RF assumes no liability or responsibility for applications assistance, customer product design, or damage to any equipment resulting from the use of Guerrilla RF products outside of stated published specifications or parameters.