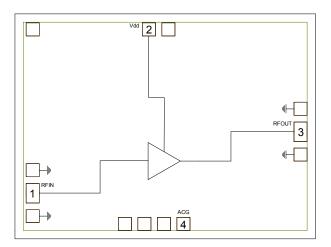
Let Performance Drive

CMD197

1-24 GHz Distributed Driver Amplifier

Features

- ▶ Wide bandwidth
- ► High linearity
- ► Single positive supply voltage
- ► On chip bias choke


Description

The CMD197 is a wideband GaAs MMIC driver amplifier ideally suited for military, space and communications systems where small size and high linearity are needed. At 10 GHz the device delivers greater than 16 dB of gain with a corresponding output 1 dB compression point of +22 dBm and an output IP3 of 32 dBm. The CMD197 is a 50 ohm matched design which eliminates the need for RF port matching and includes an on chip bias choke. The CMD197 offers full passivation for increased reliability and moisture protection.

Applications

- ► Wideband communication systems
- ► Microwave radio and VSAT
- ► Military and space
- ► Test Instrumentation

Functional Block Diagram

Electrical Performance - V_{dd} = 8.0 V, T_A = 25 °C, F=10 GHz							
Parameter	Min	Тур	Max	Units			
Frequency Range		GHz					
Gain		16		dB			
Input Return Loss		20		dB			
Output Return Loss		18		dB			
Output P1dB		22		dBm			
Output IP3		32		dBm			
Supply Current		225		mA			

1-24 GHz Distributed Driver Amplifier

Specifications

Absolute Maximum Ratings

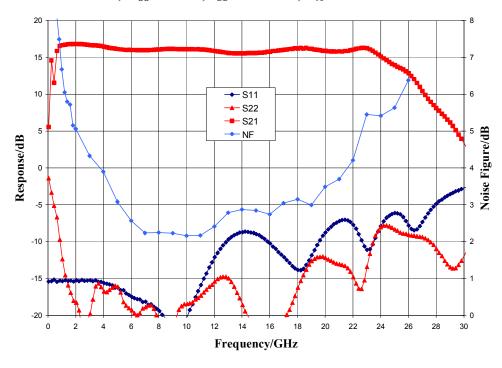
Parameter	Rating
Drain Voltage, Vdd	10 V
RF Input Power	+20 dBm
Channel Temperature, Tch	150 °C
Power Dissipation, Pdiss	2.12 W
Thermal Resistance	30.6 °C/W
Operating Temperature	-55 to 85 °C
Storage Temperature	-55 to 150 °C

Operation of this device outside the maximum ratings may cause permanent damage.

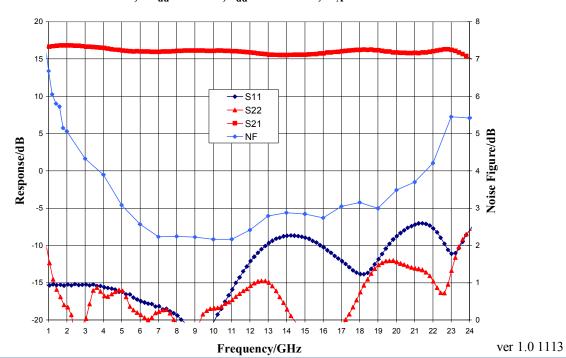
Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Vdd	5.0	8.0	9.0	V
Idd		225		mA

Electrical performance is measured at specific test conditions. Electrical specifications are not guaranteed over all recommended operating conditions

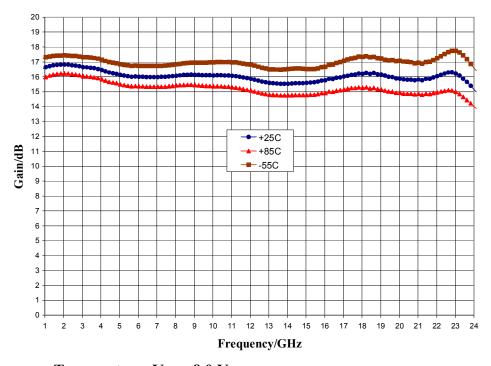

Electrical Specifications, V_{dd} = 8.0 V, T_A = 25 ^{o}C

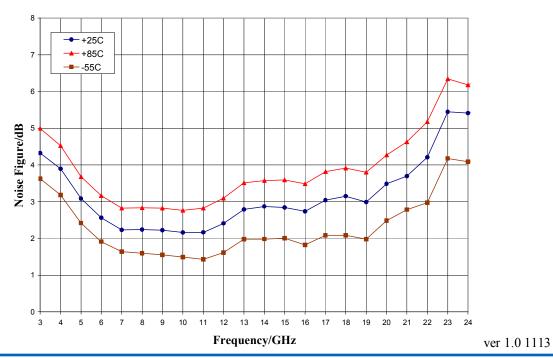
Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Frequency Range		1 - 6			6 - 18			18 - 24		GHz
Gain	13.5	16.5	19.5	13	16	19	13	16	19	dB
Noise Figure		3.5			2.5			4		dB
Input Return Loss		16			10			8		dB
Output Return Loss		17			17			12		dB
Output P1dB	21	25		19	23		17	21		dBm
Output IP3		35			32			31		dBm
Supply Current	170	225	280	170	225	280	170	225	280	mA
Gain Temperature Coefficient		.012			.012			.012		dB/°C
Noise Figure Temperature Coefficient		.011			.011			.011		dB/°C


1-24 GHz Distributed Driver Amplifier

Typical Performance

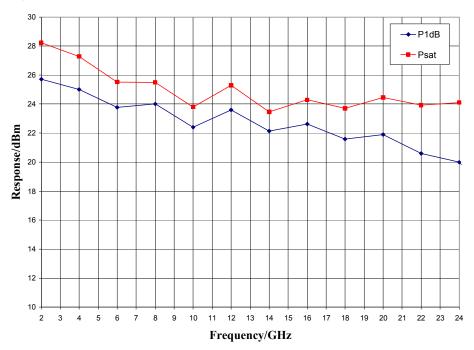
Broadband Performance, $V_{dd} = 8.0 \text{ V}$, $I_{dd} = 225 \text{ mA}$, $T_A = 25 \, ^{\circ}\text{C}$

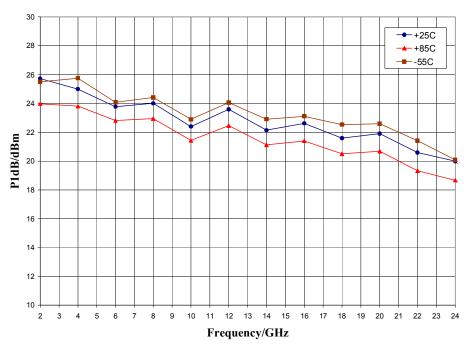

Narrow-band Performance, $V_{dd} = 8.0 \text{ V}$, $I_{dd} = 225 \text{ mA}$, $T_A = 25 \, ^{\circ}\text{C}$



Typical Performance

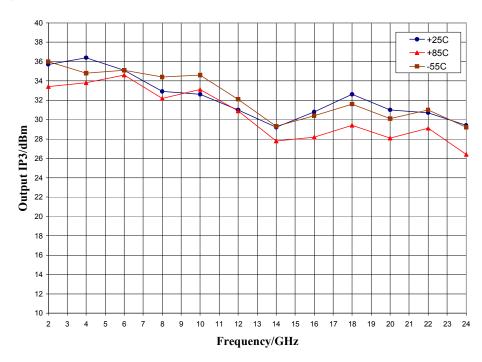
Gain vs. Temperature, $V_{dd} = 8.0 \text{ V}$


Noise Figure vs. Temperature, V_{dd} = 8.0 V


1-24 GHz Distributed Driver Amplifier

Typical Performance

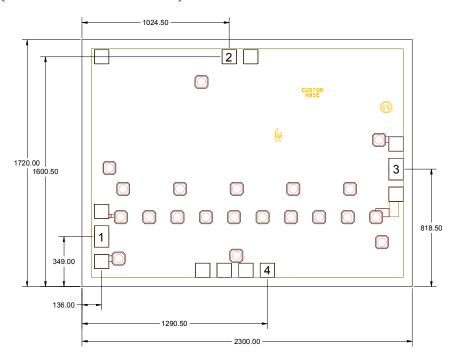
Output Power, $V_{dd} = 8.0 \text{ V}$


P1dB vs. Temperature, $V_{dd} = 8.0V$

1-24 GHz Distributed Driver Amplifier

Typical Performance

Output IP3, $V_{dd} = 8.0 \text{ V}$

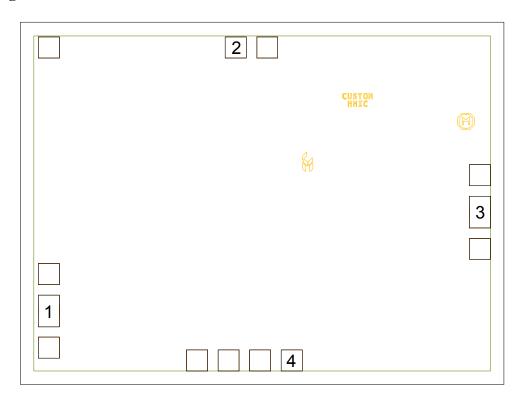


1-24 GHz Distributed Driver Amplifier

Mechanical Information

Die Outline (all dimensions in microns)

Notes:


- 1. No connection required for unlabeled pads
- 2. Backside is RF and DC ground
- 3. Backside and bond pad metal: Gold
- 4. Die is 85 microns thick
- 5. DC bond pads are 100 microns square

1-24 GHz Distributed Driver Amplifier

Pad Description

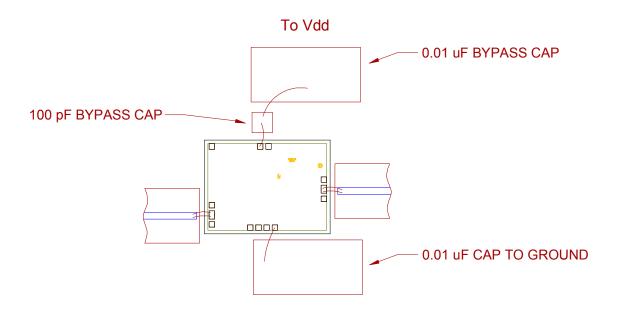
Pad Diagram

Functional Description

Pad	Function	Description	Schematic
1	RF in	50 ohm matched input External DC block required	Vdd RF in
2	Vdd	Power supply voltage Decoupling and bypass caps required	, <u> </u>
3	RF out	50 ohm matched output External DC block required	RF out
4	ACG	Low frequency termination. Attach bypass capacitor per application circuit	
Backside	Ground	Connect to RF / DC ground	GND =

1-24 GHz Distributed Driver Amplifier

Applications Information

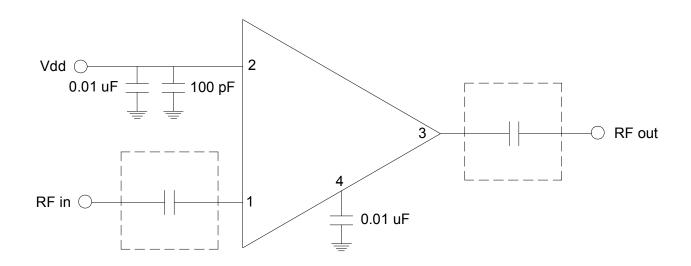

Assembly Guidelines

The backside of the CMD197 is RF ground. Die attach should be accomplished with electrically and thermally conductive epoxy only. Eutectic attach is not recommended. Standard assembly procedures should be followed for high frequency devices. The top surface of the semiconductor should be made planar to the adjacent RF transmission lines, and the RF decoupling capacitors placed in close proximity to the DC connections on chip.

RF connections should be made as short as possible to reduce the inductive effect of the bond wire. Use of a 0.8 mil thermosonic wedge bonding is highly recommended as the loop height will be minimized. The RF input and output require a double bond wire as shown.

The semiconductor is 85 um thick and should be handled by the sides of the die or with a custom collet. Do not make contact directly with the die surface as this will damage the monolithic circuitry. Handle with care.

Assembly Diagram



GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

1-24 GHz Distributed Driver Amplifier

Applications Information

Application Circuit

Biasing and Operation

The CMD197 is biased with a single positive drain supply. Performance is optimized when the drain voltage is set to +8.0 V.

Turn ON procedure:

1. Apply drain voltage V_{dd} and set to +8 V

Turn OFF procedure:

1. Turn off drain voltage V_{dd}

RF power can be applied at any time.