

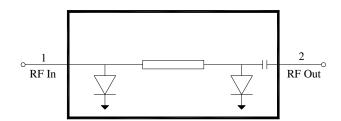

## **Applications**

- · Receive Chain Protection
- Commercial and Military Radar



## **Product Features**

Frequency Range: 1 to 6 GHzInsertion Loss: < 0.5 dB</li>


• Peak Power Handling: 100W (pulsed)

Flat Leakage: ≤ 16 dBm
Return Loss: 12 dB

Passive (no DC bias required)Integrated DC Block on output

• Chip Dimensions: 2.0 x 2.0 x 0.1 mm

## **Functional Block Diagram**



## **General Description**

The TriQuint TGL2205 is a high power, wideband MMIC GaAs VPIN limiter capable of protecting sensitive receive channel components against high power incident signals. The TGL2205 does not require DC bias and achieves a low insertion loss all in a small form factor. These features allow for simple integration with minimal impact to system performance.

The TGL2205 operates from 1 to 6 GHz and achieves low insertion loss of 0.5 dB and return loss of 12 dB. It can limit up to 100 W incident pulsed-power with a low flat leakage of 16 dBm.

The TGL2205 has a protective surface passivation layer providing environmental robustness and is ideally suited to support both commercial and defense related applications.

Lead-free and RoHS compliant.

## **Pad Configuration**

| Pad No. | Symbol |
|---------|--------|
| 1       | RF In  |
| 2       | RF Out |

# **Ordering Information**

| Part    | <b>ECCN</b> | Description                       |
|---------|-------------|-----------------------------------|
| TGL2205 | EAR99       | S and C-Band 100W<br>VPIN Limiter |





## **Absolute Maximum Ratings**

| Parameter                                        | Value          |
|--------------------------------------------------|----------------|
| Incident Power, CW or Pulsed, $50\Omega$ , $25C$ | 100W           |
| Incident Power, CW or Pulsed, $50\Omega$ , $85C$ | 50W            |
| Mounting Temperature (30 Seconds)                | 320C           |
| Storage Temperature                              | –40 to<br>150C |

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

## **Recommended Operating Conditions**

| Parameter         | Value |  |
|-------------------|-------|--|
| Passive – No bias |       |  |

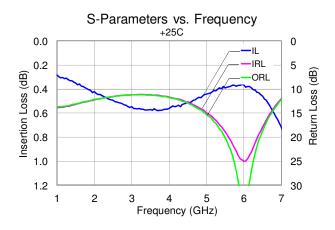
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

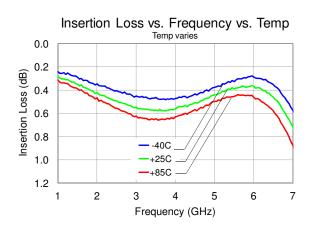
# **Electrical Specifications**

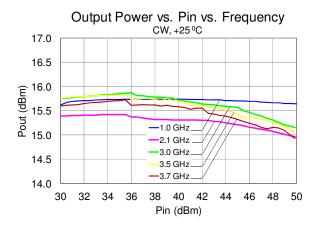
Test conditions unless otherwise noted: T = 25 °C

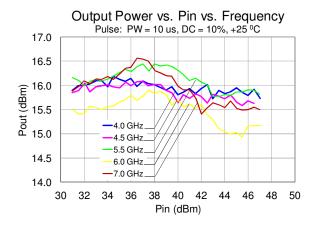
| Parameter                                      | Conditions | Min | Тур   | Max | Units |
|------------------------------------------------|------------|-----|-------|-----|-------|
| Operational Frequency Range                    |            | 1   |       | 6   | GHz   |
| Insertion Loss                                 |            |     | < 0.5 |     | dB    |
| Input Return Loss                              |            |     | 12    |     | dB    |
| Output Return Loss                             |            |     | 12    |     | dB    |
| Flat Leakage Power at P <sub>IN</sub> > 30 dBm |            |     | ≤ 16  |     | dBm   |
| Insertion Loss Temperature Coefficient         |            |     | 0.003 |     | dB/℃  |

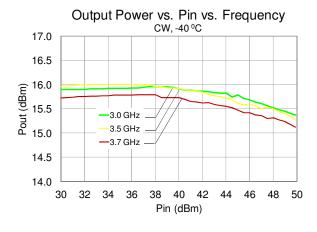
## **Thermal and Reliability Information**

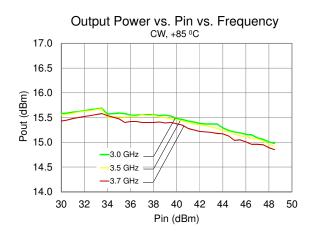

| Parameter                                                           | Test Conditions                                                | Value | Units |
|---------------------------------------------------------------------|----------------------------------------------------------------|-------|-------|
| Incident Power (RF Operational Life Test 168 Hours <sup>(1)</sup> ) | Frequency = $4.5 \text{ GHz}$ , CW, $50\Omega$ , 25C           |       | W     |
|                                                                     | Frequency = 4.5 GHz, Pulsed, PW=10us, DC=10%, $50\Omega$ , 25C | 100   | W     |


#### Notes:


1. Test was terminated at 168 hours. Insertion Loss remained ≤ 1 dB for device under test.

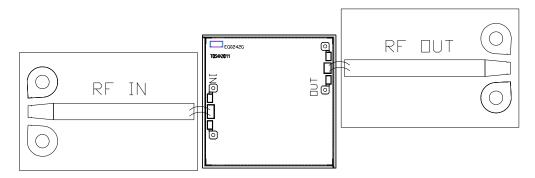




## **Typical Performance**

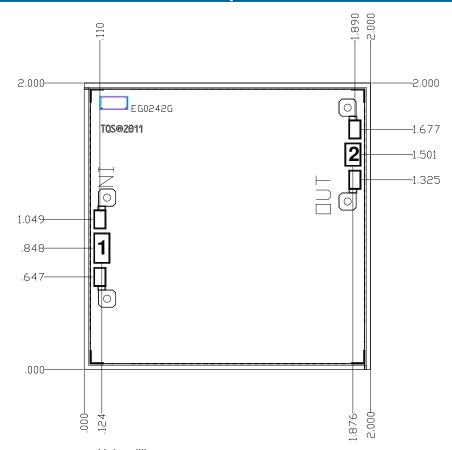











## **Assembly Drawing**



# **Mechanical Information and Pad Description**



Unit: millimeters Thickness: 0.10

Die x, y size tolerance:  $\pm 0.050$ 

Chip edge to bond pad dimensions are shown to center of pad

Ground is backside of die

| Pad Number | Symbol | Description              | Pad Size      |
|------------|--------|--------------------------|---------------|
| 1          | RF In  | Input; matched to 50 Ω.  | 0.100 x 0.200 |
| 2          | RF Out | Output; matched to 50 Ω. | 0.100 x 0.150 |



# Assembly Notes

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- · Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Solder or Organic Adhesive attachment can be used for TGL2205.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

#### Solder attachment reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300 °C to 3 to 4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- · Do not use any kind of flux.
- · Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

#### Organic adhesive attachment assembly notes:

- The organics such as epoxy or polyimide can be used.
- Epoxies cure at temperatures of 100 to 200 ℃.

#### Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- · Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.





## **Product Compliance Information**

### **ESD Sensitivity Ratings**



Caution! ESD-Sensitive Device

**ESD Rating: TBD** Value:

Test: Human Body Model (HBM) JEDEC Standard JESD22-A114 Standard:

### **ECCN**

US Department of Commerce: EAR99

### **Solderability**

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>0<sub>2</sub>) Free
- **PFOS Free**
- **SVHC Free**

### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: +1.972.994.8465 Email: info-sales@triquint.com Fax: +1.972.994.8504

For technical questions and application information: Email: info-products@triquint.com

## **Important Notice**

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.