

Fully Integrated GPS Modules Including Antenna ORG14XX Series Data Sheet

All trademarks are properties of their respective owners.

Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance.

OriginGPS assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document.

OriginGPS reserves the right to make changes in its products, specifications and other information at any time without notice.

OriginGPS navigation products are not recommended to use in life saving or life sustaining applications.

Revision: B01 01-01-12

Document number: 41010

Fully Integrated GPS Antenna Modules

1. Introduction

OriginGPS GPS modules with built-in antenna have been designed to address markets where stand alone operation, high level of integration, power consumption and flexibility are very important.

ORG14XX Series GPS antenna modules are successors of the OriginGPS popular ORG13XX series.

Featuring OriginGPS proprietary microstrip patch antenna and OriginGPS Noise-Free Zone System[™] technology the ORG14XX series offer the ultimate in high sensitivity GPS performance in small size.

The ORG14XX series module is miniature multi-channel receiver that continuously tracks all satellites in view and provides accurate positioning data in industry's standard NMEA-0183 format.

The ORG14XX series module is complete SiP (System-in-Package) featuring advanced miniature packaging technology and an ultra small footprint designed to commit unique integration features for high volume, low power and cost sensitive applications.

The ORG14XX module incorporates new SiRFstarIV[™] GPS processor.

Internal ARM CPU core and sophisticated firmware keep GPS payload off the host and allow integration in low resources embedded solutions.

The revolutionary $SiRFstarIV^{\mathbb{M}}$ architecture is optimized for how people really use location-aware products: often indoors with periods of unobstructed sky view when moving from place to place.

This new architecture can detect changes in context, temperature, and satellite signals to achieve a state of near continuous availability by maintaining and opportunistically updating its internal fine time, frequency, and ephemeris data while consuming mere microwatts of battery power.

Fully Integrated GPS Antenna Modules

2. Description

OriginGPS has researched and enhanced the performance of standard GPS receivers in real life applications. OriginGPS in-house designed Microstrip Patch antennas with highest GPS-band performance and notch filtering for out-of band signals provides high selectivity. Furthermore, combined with internal RF shield and ground plane the ORG14XX series modules reveal excellent noise immunity and exceptional sensitivity.

These carefully selected key components resulted in higher sensitivity, faster position fix, navigation stability and operation robustness under rapid environmental changes creating hard-to-achieve laboratory performance in heavy-duty environment.

2.1 Features

- Stand alone operation
- OriginGPS Noise Free Zone System (NFZ[™]) technology
- Integrated proprietary microstrip patch antenna element
- Integrated LNA, SAW Filter, DC-DC buck regulator¹, I/O Buffers¹, TCXO and RTC
- SiRFstarIV[™] GSD4e GPS processor
- L1 (1575MHz) frequency, C/A code
- 48 track verification channels
- Navigation sensitivity: -160dBm
- Tracking sensitivity: -163dBm for indoor fixes
- Fast TTFF: < 35s under Cold Start conditions< 1s under Hot Start conditions
 - Multipath mitigation and indoor tracking
- Active jammer remover: tracks up to 8 CW interferers and removes jammers up to 80dB-Hz
- SBAS (WAAS, EGNOS, MSAS) support²
- Assisted GPS (A-GPS) support
- Almanac Based Positioning (ABP[™])²
- Client Generated Extended Ephemeris (CGEE[™]) and Server Generated Extended Ephemeris (SGEE[™]) for very fast TTFFs are supported through SiRFInstantFix[™] and SiRFInstantFixII[™]
- Automatic and user programmable power saving scenarios: ATP[™], PTF[™], APM[™]
- SiRFAware [™] Micro Power Mode (MPM) support²
- Low power consumption: <20mW during ATP[™]
- ARM7 109MHz baseband CPU
- Smart sensor I²C master interface²
- UART host interface, SPI optionally³
- Programmable UART protocol and messages rate
- Selectable NMEA or OSP (SiRF Binary) communication standards
- Single voltage supply: wide input range¹ 2V 6V with UVLO or 1.8V
- Ultra small footprint: 17mm x 17mm
- Surface Mount Device (SMD)
- Industrial operating temperature range: -40⁰ to 85⁰C
- Pb-Free RoHS compliant

Notes:

01-01-12

- 1. Not available in Basic series
- 2. Available in Premium series only

3. Different ordering codes for SPI

Document number: 41010 For technical questions contact: info@origingps.com w Revision: B01

2.2 Architecture

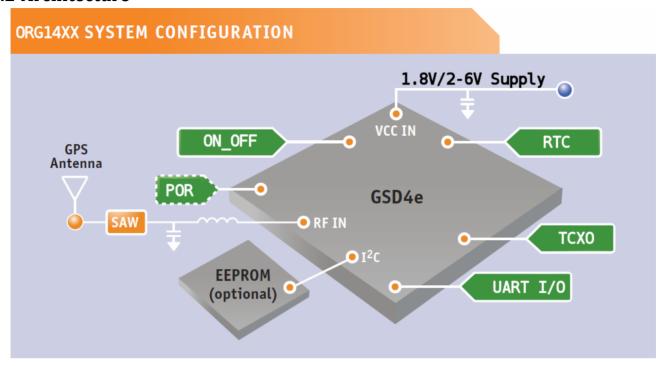


Figure 2-1: ORG14XX architecture

Microstrip Patch Antenna

OriginGPS integrated microstrip patch antenna element collects signals at 1575 MHz from the medium and blocks out-of-GPS L1 band frequencies.

ESD Protection Device

ESD TVS diode provides protection for module circuitry from high voltage transients on embedded antenna.

Band-Pass SAW Filter

Band-pass SAW filter eliminates inter-modulated out-of-band signals that may corrupt GPS receiver performance.

LNA (Low Noise Amplifier)

The integrated LNA amplifies the GPS signal to meet RF down converter input threshold. Noise Figure optimized design was implemented to provide maximum sensitivity.

DC-DC Voltage Regulator

The high efficiency synchronous DC-DC step-down switch mode converter provides regulated voltage supply for GPS processor over wide input voltage range.

The design of this section was optimized for low ripple, low quiescent current and high PSRR.

TCXO (Temperature Compensated Crystal Oscillator)

This highly stable 16.369 MHz oscillator controls the down conversion process in RF block of the GPS processor. Highest characteristics of this component are important factors in sensitivity, fast TTFF and navigation stability.

RTC (Real Time Clock) crystal

This miniature component with very tight specifications is necessary for maintaining Hot Start and Warm Start capabilities.

Fully Integrated GPS Antenna Modules

■ POR (Power-On Reset) Generator

This low quiescent current supervisory circuit monitors voltage domains and provides trigger signal for module power-up.

■ EEPROM (Electrically Erasable Programmable Read-Only Memory)

The 1Mbit serial EEPROM device provides local storage for Client Generated and Server Generated Extended Ephemeris data as well as for patches for GPS processor ROM firmware.

RF Shield

RF enclosure avoids external interference to compromise sensitive circuitry inside the receiver. RF shield also blocks module's internal high frequency emissions from being radiated.

GSD4e IC

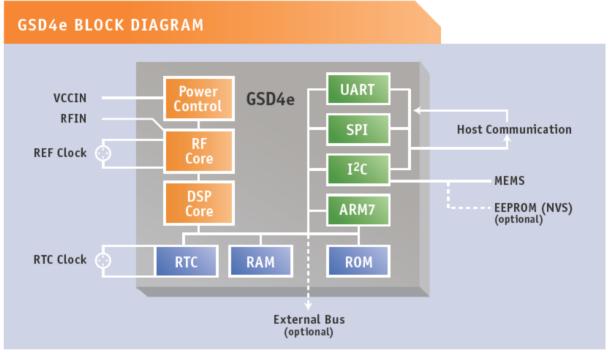


Figure 2-2: GSD4e functional block diagram

SiRFstarIV[™] GSD4e is a navigation processor built on a low-power RF CMOS single-die, incorporating the baseband, integrated navigation solution software, ARM7 processor that form a complete stand alone or assisted-GPS engine.

SiRFstarIV[™] GSD4e GPS processor includes the following units:

- GPS RF core incorporating LNA, down converter, fractional-N synthesizer and ADC block with selectable 2 and 4-bit quantization
- GPS DSP core incorporating more than twice the clock speed and more than double the RAM capacity relative to predecessor market benchmarking SiRFStarIII[™] GPS processor
- ARM7 microprocessor system incorporating 109MHz CPU and interrupt controller
- ROM block as code storage for PVT applications
- RAM block for data cache
- RTC block
- UART block
- SPI block
- Power control block for internal voltage domains management

Criging RF Modules Technologies

ORG14XX Series Datasheet

Fully Integrated GPS Antenna Modules

2.3 Applications

The ORG14XX series GPS antenna modules were specially designed to meet wide range of OEM configurations and applications.

ORG1400

The ORG1400 is low profile GPS antenna module.

The ORG1400 is ideal for portable electronics applications with direct satellite visibility:

- Handheld consumer navigation and multifunction devices
- Precise timing devices
- Micro robots and micro UAVs
- People and animal tracking systems

ORG1415

The ORG1415 is standard version of the ORG14XX series GPS antenna modules.

The ORG1415 is ideal for standard positioning and navigation applications including indoor tracking:

- People and animal tracking systems
- Sports and recreation accessories
- Vehicle tracking and fleet management systems
- Workforce management systems
- Automotive navigation systems
- Rescue and emergency systems
- Marine navigation systems

ORG1418

The ORG1418 is enhanced sensitivity version of the ORG1415 GPS antenna module.

The ORG1418 is ideal for applications where module installation position and orientation limits satellite visibility:

- Automotive security systems
- Asset tracking SKU systems
- Telemetric systems
- Industrial navigation systems

Document number: 41010 For technical questions contact: info@origingps.com www.origingps.com

Revision: B01 01-01-12

Fully Integrated GPS Antenna Modules

3. Electrical Specifications

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings are stress ratings only.

Stresses exceeding Absolute Maximum Ratings may damage the device.

Parameter			Min	Max	Units
Davies Crossly Valtara	Basic series	\/	-	2.2	V
Power Supply Voltage	Standard and Premium series	V _{cc}		6.5	V
TX Buffer Supply Voltage	e	V_{TX}	ı	5.5	V
TX Buffer Source/Sink Current		I_{TX}	-10	10	mA
I/O Voltage		V_{10}	-0.3	3.6	V
I/O Source/Sink Current		I _{IO}	-2	+2	mA
1.8V Source Current		I _{1V8}		10	mA
ESD Rating		V _(ESD)	-2	2	kV
Power Dissipation		P_{D}	-	200	mW
Storage Temperature		T _{ST}	-55	+125	°C
Lead Temperature (10 s	ec. @ 1mm from case)	T _{LEAD}		+260	°C

Table 3-1: Absolute maximum ratings

Document number: 41010 For technical questions contact: info@origingps.com www.c Revision: B01

01-01-12

Fully Integrated GPS Antenna Modules

3.2 Recommended Operating Conditions

Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Standard and Premium Series							
Parameter	Symbol	Mode / Pad	Test Conditions	Min	Тур	Max	Units
				2.0	3.3	6.0	V
Power Supply Voltage	V_{CC}	V_{CC}	V _{cc} falling		1.8	1.9	V
			V _{CC} rising		1.9	2.0	V
		Acquisition			33	43	mA
		Tracking		7		33	mA
		CPU only ¹	-130dBm (Outdoor)		14		mA
Power Supply Current	I_{CC}	MPM ^{™2}	$V_{CC} = 2V$		0.5		mA
		Standby ¹	$T_{AMB} = 25^{\circ}C$		0.1		mA
		Hibernate			30	100	μΑ
		Shutdown			0.5	1	μΑ
1.8V Output Voltage	V_{1V8}	V_{1V8}		1.77	1.80	1.83	V
1.8V Output Current	I _{1V8}	V_{1V8}				20	mA
TX Buffer Supply Voltage	V_{TX}	V_{TX}		1.80		5	V
TX Buffer Supply Current	I _{TX}	V_{TX}			1	10	mA
		UART/SPI/GPIO				0.45	V
Input Voltage Low State	V_{IL}	ON_OFF				0.3	V
		EN				0.6	V
		UART/SPI/GPIO		1.26		3.6	V
Input Voltage High State	V_{IH}	ON_OFF		1.0		3.6	V
		EN		0.8		V_{CC}	V
Output Voltage Low State	V _{OL}	UART	I _{OL} = 4mA			0.4	V
Output voitage Low State	VOL	SPI / GPIO	10L – 4111A			0.4	V
Output Voltage High State	V _{OH}	UART	I _{OH} = -4mA	V_{TX} -0.4			V
Output voitage riigii State	V OH	SPI / GPIO	10H4111A	1.35	1.71	1.8	V
		UART/SPI/GPIO	V _{IN} = 1.8V or 0V	-10		+10	μΑ
Input Leakage Current	I _{IN(leak)}	ON_OFF	V _{IN} = 1.8V or 0V	-0.2		+0.2	μΑ
		EN	$V_{IN} = V_{CC} \text{ or } 0V$	-0.5	0.01	0.5	μΑ
Input Capacitance	C	UART			4	10	pF
mpat Capacitance	C _{IN}	SPI / GPIO			5		pF
Operating Temperature ³	T _{AMB}			-40	+25	+85	°C
Relative Humidity	RH		-40 ⁰ C ≤T _{AMB} ≤+85 ⁰ C	5		95	%

Table 3-2: Standard and Premuim series operating conditions

Document number: 41010 Revision: B01

01-01-12

Fully Integrated GPS Antenna Modules

Basic series								
Parameter	Symbol	Mode / Pad	Test Conditions	Min	Тур	Max	Units	
Power supply voltage	V_{CC}	V _{cc}		1.71	1.80	1.89	V	
		Acquisition			33	43	mA	
		Tracking		7		33	mA	
		CPU only ¹	-130dBm (Outdoor)		14		mA	
Power Supply Current	I_{CC}	MPM ^{™2}	_		0.5		mA	
		Standby ¹	$T_{AMB} = 25^{\circ}C$		0.1		mA	
		Hibernate			20	30	μΑ	
		Shutdown		Not Applicable				
1.8V Output Voltage	V_{1V8}	V_{1V8}			V_{CC}		V	
		UART/SPI/GPIO				0.45	V	
Input Voltage Low State	V_{IL}	ON_OFF				0.45	V	
	EN	EN		Not Applicable				
		UART/SPI/GPIO		0.70•V _{CC}		3.6	V	
Input Voltage High State	V_{IH}	ON_OFF		0.70•V _{CC}		3.6	V	
		EN			Not App	licable		
Output Voltage Low State	V_{OL}	UART/SPI/GPIO	$I_{OL} = 4mA$			0.4	V	
Output Voltage High State	V _{OH}	UART/SPI/GPIO	I _{OH} = -4mA	0.75•V _{CC}			V	
Input Leakage Current	I _{IN(leak)}	All input pads	$V_{IN} = 1.8V \text{ or } 0V$	-10		+10	μΑ	
Input Capacitance	C_{IN}	All input pads			5		рF	
Operating Temperature ³	T _{AMB}			-40	+25	+85	°C	
Relative Humidity	RH		-40 ⁰ C ≤T _{AMB} ≤+85 ⁰ C	5		95	%	

Table 3-3: Basic series operating conditions

- Transitional states of ATP[™] low power mode
 Average current during SiRFAware[™] Micro Power Mode
 Operation below -20⁰C to -40⁰C and above +70⁰C to +85⁰C is accepted, but TTFF may increase

Fully Integrated GPS Antenna Modules

4. Performance

4.1 Acquisition times

TTFF (Time To First Fix) – is the period of time from GPS power-up till position estimation.

Hot Start

A hot start results from software reset after a period of continuous navigation or a return from a short idle period that was preceded by a period of continuous navigation.

In this state, all of the critical data (position, velocity, time, and satellite ephemeris) is valid to the specified accuracy and available in RAM.

Warm Start

A warm start typically results from user-supplied position and time initialization data or continuous RTC operation with an accurate last known position available in memory.

In this state, position and time data are present and valid, but ephemeris data validity has expired.

Cold Start

A cold start acquisition results when either position or time data is unknown.

Aided Start

Aiding is a method of effectively reducing the TTFF by making every start Hot or Warm.

	TTFF	Test Condition	Signal Level
Hot Start	< 1s		
Aided Start ¹	< 10s		
Warm Start	< 32s	Outdoor, Static	-130 dBm
Cold Start	< 35s		
Signal Reacquisition	< 1s		

Table 4-1: Acquisition times

4.2 Sensitivity

Test Condition	Signal Level
Tracking	-163 dBm
Navigation	-161 dBm
Aided ¹	-156 dBm
Cold Start	-148 dBm

Table 4-2: Sensitivity

4.3 Received Signal Strength

	ORG1400	ORG1415	ORG1418
Average C/N ₀ ²	40 dB-Hz	45 dB-Hz	48 dB-Hz

Table 4-3: Received signal strength

Notes:

01-01-12

Host-assisted device by SGEE[™] or self-assisted by CGEE[™] or Ephemeris Push

2. Averaging of 5 SV's with highest C/N₀ @ -130dBm, HDOP <1.5

Document number: 41010 For technical questions contact: info@origingps.com Revision: B01

4.4 Power Consumption

Standard and Premium series				
Operation Mode Power Consumption				
Acquisition	80mW			
Tracking	20-75mW			
Hibernate	80μW			

Table 4-4: Standard and Premium series power consumption @ $V_{CC} = 2V$ (average)

Basic series				
Operation Mode	Power Consumption			
Acquisition	100mW			
Tracking	10-70mW			
Hibernate	40μW			

Table 4-4: Basic series power consumption @ $V_{CC} = 1.8V$ (average)

4.5 Accuracy

		Method	Accuracy	Units	Test Conditions
		CED (E00()	< 2.5	m	-130 dBm (Outdoor), Static
	Horizontol	CEP (50%)	< 2	m	-130 dBm (Outdoor), SBAS, Static
	Horizontal	24DMC (0E0/)	< 5	m	-130 dBm (Outdoor), Static
Docition		2dRMS (95%)	< 4	m	-130 dBm (Outdoor), SBAS, Static
Position	Vertical	VEP (50%)	< 4	m	-130 dBm (Outdoor), Static
			< 3	m	-130 dBm (Outdoor), SBAS, Static
			<7.5	m	-130 dBm (Outdoor), Static
		2dRMS (95%)	< 6	m	-130 dBm (Outdoor), SBAS, Static
Velocity	Horizontal	50%	< 0.01	m/s	-130 dBm (Outdoor), 30 m/s
Heading		50%	< 0.01	0	-130 dBm (Outdoor), 30 m/s
Time		1 PPS	< 1	μs	-130 dBm (Outdoor)

Table 4-5: Accuracy

4.6 Dynamic Constrains¹

Velocity <	515 m/s	1,000 knots
Acceleration <	4g	
Altitude <	18,288 m	60,000 ft.

Table 4-6: Dynamic constrains

Note: 1. Standard dynamic constrains according to regulatory limitations

Document number: 41010 For technical questions contact: info@origingps.com

www.origingps.com

- 11 -

Criging PS RE Modules Technologies

ORG14XX Series Datasheet

Fully Integrated GPS Antenna Modules

5. Power Management

5.1 Power states

Full Power state (Acquisition/Tracking)

The module stays in full power until a position solution is made and estimated to be reliable. During the acquisition, processing is more intense than during tracking, thus consuming more power.

CPU Only state

This is the state when the RF and DSP sections are partially powered off.

The state is entered when the satellites measurements have been acquired but the navigation solution still needs to be computed.

Standby state

This is the state when the RF and DSP sections are completely powered off and baseband clock is stopped.

Hibernate state

In this state the RF, DSP and baseband sections are completely powered off leaving only the RTC and Battery-Backed RAM running.

The module will perform Hot Start if held in Hibernate state less than 2 hours after valid position solution was acquired.

Shutdown state

In this state the ORG14XX series module is inhibited by driving EN input low.

The module will perform Cold Start after Shutdown state.

5.2 Power saving modes

01-01-12

The ORG14XX series module has three power management modes available in modules with Basic firmware – ATP^{\bowtie} , APM^{\bowtie} and PTF^{\bowtie} and additional SiRFAware $^{\bowtie}$ Micro Power Mode (MPM $^{\bowtie}$) available in modules with Premium firmware, which are controlled by internal state machine. These modes provide different levels of power saving with different degradation level of position accuracy.

Document number: 41010 For technical questions contact: info@origingps.com Revision: B01

Adaptive Trickle Power (ATP[™])

Adaptive Trickle Power (ATP^{M}) is best suited for applications that require navigation solutions at a fixed rate as well as low power consumption and an ability to track weak signals.

This power saving mode provides the most accurate position.

In ATP^{TM} mode the ORG14XX module is intelligently cycled between Full Power, CPU Only and Standby states to optimize low power operation.

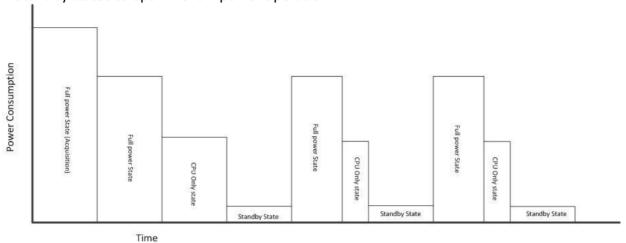


Figure 5-1: ATP[™] timing

Push-to-Fix (PTF[™])

Push-to-Fix (PTF[™]) is best suited for applications that require infrequent navigation solutions, optimizing battery life time.

In PTF[™] mode the ORG14XX module is mostly in Hibernate state, waked up for Ephemeris and Almanac refresh in fixed periods of time.

The PTF[™] period is 30 minutes by default but can be anywhere between 10 seconds and 2 hours. When the PTF mode is enabled the receiver will stay in Full Power state until the good navigation solution is computed.

When the application needs a position report it can toggle the ON_OFF pad to wake up the module. In this case, a new PTF^{T} cycle with default settings begins.

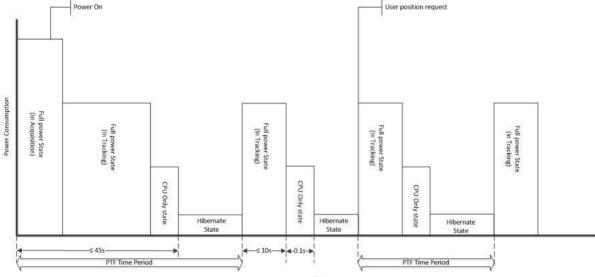
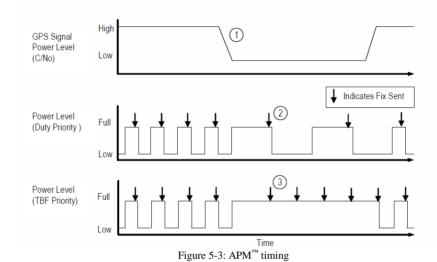


Figure 5-2: PTF[™] timing

Advanced Power Management (APM[™])


Advanced Power Management ($APM^{^{\mathsf{M}}}$) is designed to give the user more options to configure the power management. The $APM^{^{\mathsf{M}}}$ mode allows power savings while ensuring that the Quality of the Solution (QoS) in maintained when signals level drop.

In addition to setting the position report interval, a QoS specification is available that sets allowable error estimates and selects priorities between position report interval and more power saving. The user may select between Duty Cycle Priority for more power saving and TBF (Time Between Fixes) Priority with defined or undefined maximum horizontal error.

TBF range is from 10 to 180 sec. between fixes, Power Duty Cycle range is between 5 to 100%. Maximum position error is configurable between 1 to 160m.

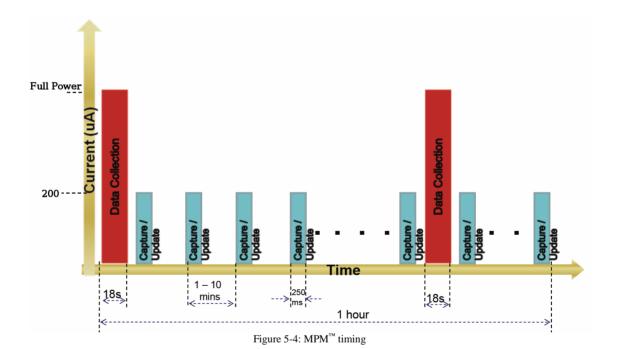
The number of APM[™] fixes is configurable up to 255 or set to continuous.

In APM[™] mode the module is intelligently cycled between Full Power and Hibernate states.

- 1. GPS signal level drops (e.g. user walks indoors)
- 2. Lower signal results in longer ON time. To maintain Duty Cucle, OFF time is increased.
- 3. Lower signal means missed fix. To maintain future TBFs, the module goes info Full Power state until signal levels improve.

SiRFAware[™] Micro Power Mode (MPM[™])¹

With MPM $^{\text{\tiny TM}}$ SiRFAware $^{\text{\tiny M}}$, the ORG14XX series module determines how much signal processing to do and how often to do it, so that the receiver is always able to do a fast hot start (TTFF < 2 s) on demand.


In this mode the receiver is configured to wake up (typically twice an hour) for 18-24 sec. to collect new Ephemeris data. Ephemeris Data Collection operation consumes the current equal to Full Power state.

Additionally, the module will wake up once every 1 to 10 min. for 250ms to update internal navigation state and GPS time calibration. Capture/Update operation consumes about $200\mu A$. Rest of the time the receiver remains in Hibernate state.

The host sends ON_OFF interrupt to wake up the module.

After valid fix is available, the host can turn the module back into $MPM^{^{\mathsf{TM}}}$ by re-sending the configuration message.

Average current consumption over long period during MPM^{m} is about 0.5mA.

Note:

6. Extended Features

6.1 Almanac Based Positioning (ABP™)¹

With $ABP^{^{\text{TM}}}$ mode enabled, the user can get shorter Cold Start TTFF as a tradeoff with the position error.

When no sufficient Ephemeris data is available to calculate an accurate solution, a coarse solution will be provided where the position is calculated based on one or more of the SVs having their states derived from Almanac data.

Almanac data for ABP[™] purposes may be stored factory set, broadcasted or pushed.

6.2 Active Jammer Remover

Jamming Remover is an embedded DSP block that detects, tracks and removes up to 8 Continuous Wave (CW) type signals of up to 80dB-Hz each.

Jamming Remover is effective only against continuous narrow band interference signals and covers GPS L1 1575Mhz frequency ±4MHz.

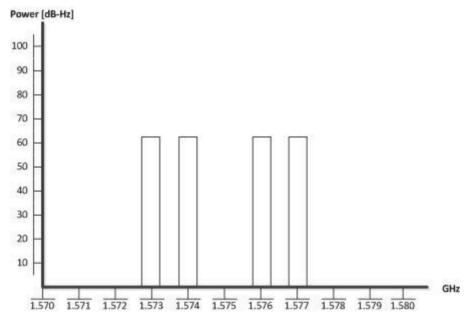


Figure 6-1: Active Jammer Detection frequency plot

6.3 Client Generated Extended Ephemeris (CGEE™)

The CGEE[™] feature allows shorter TTFF by providing predicted (synthetic) ephemeris files created within a lost host system from previously received broadcast Ephemeris.

The prediction process requires good receipt of broadcast Ephemeris data for all satellites.

EE files created this way are good for up to 3 days and then expire.

The CGEE[™] feature requires avoidance of power supply removal.

CGEE[™] data files are stored on internal or external EEPROM or Serial Flash and managed by the receiver or storage and management is done by host.

Note:

Revision: B01 01-01-12

Document number: 41010

^{1.} Not available in modules with Standard firmware

Fully Integrated GPS Antenna Modules

7. Interface

7.1 Pad Assignment

Pad Number	Pad Name	Pad Description	Direction	Default	Notes	
1	RX	UART Receive	Input	High	1.8 – 3.6V	
2	TX	UART Transmit	Output	High	High state voltage level is set by V_{TX}	
3	V_{TX}	TX Buffer Power	Power		1.8 - 5.0 V	
4	SCK	SPI Clock	Input	Low		
5	nSE	SPI Chip Select	Input	High	1.8 - 3.6V	
6	SDO	SPI Data Out	Output	High		
7	EN	Module Enable	Input	High	Drive low to inhibit the module	
8	V_{CC}	System Power	Power		2 - 6V	
9	V_{1V8}	1.8V Source	Power		Voltage source. Do not power this pad	
10	GND	System Ground	Power			
11	GND	System Ground	Power			
12	GND	System Ground	Power			
13	GND	System Ground	Power			
14	GND	System Ground	Power			
15	WAKEUP	Power Status	Output	Low	1.8V compatible	
16	nRESET	Asynchronous Reset	Input	High	Do not drive	
17	ON_OFF	Power State Control	Input	Low	1.8 - 3.6V	
18	DR_SDA	Master I ² C SDA	Bi-dir	High	1.8V compatible	
19	DR_SCL	Master I ² C SCL	Output	High	1.8 v companile	
20	EIT	External Interrupt	Input	High	1.8 - 3.6V	
21	1PPS	UTC Time Mark	Output	Low	1.8V compatible	
22	SDI	SPI Data In	Input	High	1.8 – 3.6V	

Table 7-1: ORG14XX pin-out

riqin_{GPS}

ORG14XX Series Datasheet

Fully Integrated GPS Antenna Modules

7.2 Connectivity

7.2.1. Power

The ORG14XX series module requires only one power supply V_{CC} , which can be supplied directly from a battery since the module has internal regulators.

Power supply current consumption varies according to the processor load and satellite acquisition. It is recommended to keep the power supply on all the time in order to maintain the non-volatile RTC and RAM active for fastest possible TTFF. When the V_{CC} is powered off settings are reset to factory default and the receiver performs Cold Start on next power up.

Power supply - Basic series

In Basic series the V_{CC} is 1.8V DC.

Typical I_{CC} current is 37mA during acquisition. Peak I_{CC} current is 60mA.

Typical I_{CC} current in Hibernate state is $20\mu A$.

Voltage ripple below 50mV_{PP} allowed for frequency between 100KHz to 1MHz.

Voltage ripple below 15mV_{PP} allowed for frequency above 1MHz.

Higher voltage ripple may compromise the ORG14XX series module performance.

Power supply - Standard and Premium series

In Standard and Premium series V_{CC} range is 2 to 6V DC.

Typical I_{CC} current is 23mA during acquisition. Peak I_{CC} current is 50mA.

Typical I_{CC} current in Hibernate state is 50μ A.

Voltage ripple below 30mV_{PP} allowed for frequency above 1MHz.

Higher voltage ripple may compromise the ORG14XX series module performance.

In Standard and Premium series the under voltage lockout (UVLO) circuit prevents the device from misoperation at low input voltages.

The UVLO circuit prevents the integrated DC-DC switch-mode regulator from turning on the switch or rectifier MOSFET under undefined conditions. It has a UVLO threshold set to 1.8V.

Fully functional operation is permitted for input voltage down to the falling UVLO threshold level.

The converter starts operation again once the input voltage trips the rising UVLO threshold level.

TX power

 V_{TX} power input is for integrated data output level shifter between 1.8V GPS processor domain and bost

V_{TX} power supply range is 1.8 to 3.6V DC according to required TX output voltage swing.

Typical I_{TX} current is 1mA and varies with input load of host.

 V_{TX} may be externally connected to V_{CC} , while module and host I/O are in same voltage domain.

 V_{TX} may be externally connected to V_{1V8} , while host I/O is in 1.8V voltage domain.

Data output level shifter is internally controlled by GPS processor and automatically turned off during low power states.

1.8V power source

 V_{1V8} power supply provides regulated 1.8V voltage source for peripheral components, like MEMS sensors connected to DR I²C bus.

Maximum I_{1V8} continuous output current is 20mA.

Ground

Single Ground pad should be connected to host PCB Ground with shortest possible trace or via.

Document number: 41010 For technical questions contact: info@origingps.com www.origingps.com
Revision: B01 - 18 -

01-01-12

Fully Integrated GPS Antenna Modules

7.2.2. Host Control Interface

ON OFF input

The ON_OFF control input is used to switch the receiver between different power states.

- If the system is in Hibernate state, an ON_OFF pulse will move to Full Power mode
- If the system is in ATP^{TM} mode, an ON OFF pulse will move it to Full Power mode.
- If the system is in PTF[™] mode, an ON OFF pulse will initiate one PTF[™] cycle.
- If the system is already in Full Power mode, an ON OFF pulse will initiate orderly shutdown.

ON_OFF pulse requires a rising edge and high level that persists for at least $100\mu s$ in order to be detected. Resetting the ON_OFF detector requires that ON_OFF go to logic low at least $100\mu s$. Recommended low-high-low pulse length is 100ms.

ON_OFF interrupts with less than 1 sec intervals are not recommended.

Multiple switch bounce pulses are recommended to be filtered out.

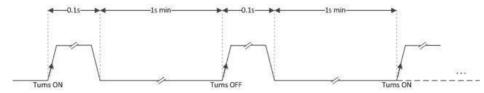


Figure 7-1: Recommended ON OFF timing

ON_OFF input has internal pull-down resistor of $100k\Omega$.

ON_OFF pulse high state is 1.2 to 6V. Do not drive high permanently or pull-up this input. Must be connected to host.

WAKEUP output

The WAKEUP pad is an output from the ORG14XX series module, used to flag for power state.

A logic low on this output indicates that the module is in one of its low-power states - Hibernate or Standby. A logic high on this output indicates that the module is in Full Power state.

In addition WAKEUP output can be used to control enable of auxiliary devices.

Wakeup output is LVCMOS 1.8V compatible. Do not connect if not in use.

Enable input

The Enable control input can be used to fully inhibit the ORG14XX module.

Enable signal is active low and has internal $100k\Omega$ pull-up resistor.

Do not connect to this input if the feature is not in use.

nRESET input

The Power-on-Reset (POR) is generated internally in the ORG14XX series module.

Additionally, manual reset option is available through nRESET pad.

Resetting the module clears the RTC block and configuration settings become default.

nRESET signal should be applied for at least 1µs.

nRESET input is active low and has internal pull-up resistor of $86k\Omega$.

Do not drive this input high. Do not connect if not in use.

1PPS output

Document number: 41010

The pulse-per-second (PPS) output provides a pulse signal for timing purposes.

Pulse length (high state) is 200ms about 1µs synchronized to full UTC second.

The UTC time message is generated and put into output FIFO 300ms after PPS.

The exact time between the PPS and UTC time message delivery depends on message rate, message queue and communication baud rate.

1PPS output is LVCMOS 1.8V compatible. Do not connect if not in use.

Revision: B01 01-01-12

7.2.3. Host Data Interface

The ORG14XX series module has 2 types of interface ports to connect to host: UART and SPI. The ORG14XX series module is factory set to support UART or SPI by internal configuration straps.

UART

The module has a 4-wire UART port:

- TX used for GPS data reports. Output logic high voltage level is set by V_{TX}.
- RX used for receiver control. Input logic high voltage level is 1.45 to 3.6V.
- nCTS is optionally used for hardware flow control.

 High when host allows TX from the module. Input logic high voltage level is 1.45 to 3.6V.
- nRTS is optionally used for hardware flow control.
 High when module is ready to TX. Output logic high voltage level is 1.8V.

Operation:

The UART performs bit-by-bit transmitting and receiving in 8-bit octets when module is active. On the transmit side 1 start bit, 8 data bits and 2 stop bits followed by next character or idle line. Designers should treat computations of maximum message output capacity from ORG14XX with 11-bits per transmitted character.

On the receive side 1 start bit, 8 data bits, 1 stop bit or longer is accepted.

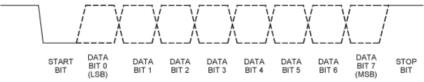


Figure 7-2: UART integrity

Because UART transmission is asynchronous and sampled by the receiver, both sides require closely match bit-rate clocks, and that data bit waveform and timing distortion at the receiver should be limited.

The default protocol is NMEA@4,800bps.

The configuration for baud rates and respective protocols can be changed by commands via NMEA or OSP^{T} protocols.

	Baud Rate (bps)	Error (%)
	4800	0.06
Ī	9600	0.00
Ī	19200	0.00
Ī	38400	0.07

Baud Rate (bps)	Error (%)
115200	0.24
230400	1.04
460800	0.60
921600	2.40

Table 7-3: UART baud rate tolerance

Maximum allowed clock rate difference between ORG14XX and host is 2.0% overall. Maximum bit-edge distortion \leq 5% bit length. Maximum bit jitter \leq 5% bit length.

Document number: 41010 For technical questions contact: info@origingps.com www.origingps.com Revision: B01 - 20 -

01-01-12

Fully Integrated GPS Antenna Modules

SPI

The SPI (Serial to Peripheral Interface) is a master/slave synchronous serial bus that consists of 4 signals:

- Serial Clock (SCK) from master to slave.
- Serial Data Out (also called Master Out Slave In or MOSI) from master.
- Serial Data In (also called Master In Slave Out or MISO) from slave.
- Chip Select (CS) from master.

The host interface SPI of the ORG14XX series module is a slave mode SPI.

The four SPI pads are RX (MOSI), TX (MISO), nRTS(nCS) and nCTS(SCK).

Output logic high voltage level is set by V_{TX} . Inputs are 3.6V tolerant.

The host interface SPI features are:

- TX and RX each have independent 1024 byte FIFO buffers.
- RX and TX have independent, software specified two byte idle patterns of '0xA7 0xB4'.
- TX FIFO is disabled when empty and transmits its idle pattern until re-enabled.
- RX FIFO detects a software specified number of idle pattern repeats and then disables FIFO input until the idle pattern is broken.
- FIFO buffers can generate an interrupt at any fill level.
- SPI detects synchronization errors and can be reset by software.
- Supports a maximum clock of 6.8MHz.
- Default GPS data output format is NMEA standard.

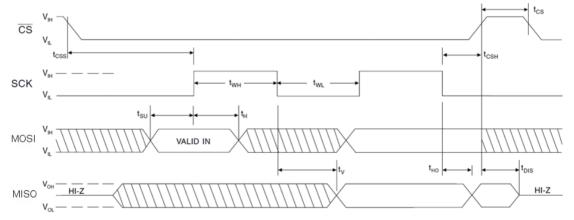


Figure 7-3: SPI timing

Symbol	Parameter	Min	Max	Units
t _{CLK}	SCK Time Period	140		ns
t _{CSS}	nCS Setup Time	0.5	1	t _{CLK}
t _{cs}	nCS High Time	1		t _{CLK}
t _{wh}	SCK High Time	0.5		t _{CLK}
t _{WL}	SCK Low Time	0.5		t _{CLK}
t _{CSH}	nCS Hold Time	0.5	1	t _{CLK}
t _{su}	Data In Setup Time	0.5		t _{CLK}
t _H	Data In Hold Time	0.5		t _{CLK}
t _v	Output Valid	0.5		t _{CLK}
t _{HO}	Output Hold Time	0.5		t _{CLK}
t _{DIS}	Output Disable Time		0.5	t _{CLK}

Table 7-4: SPI timing

Document number: 41010 For technical questions contact: info@origingps.com www.origingps.com Revision: B01

Fully Integrated GPS Antenna Modules

Operation:

The SPI performs bit-by-bit transmitting and receiving at the same time whenever nCS is asserted and SCK is active. In order to communicate properly with SPI device, the protocol must be agreed – specifically- SPI mode and an idle byte pattern.

Among 4 SPI modes of the clock polarity (CPOL) and clock phase (CPHA) only SPI Mode 1 <CPOL="0", CPHA ="1"> is currently supported:

- At CPOL="0" the base value of the clock is zero.
- For CPHA="1", data are read on the clock's falling edge and data are changed on a rising edge.

On power up, the first message to come out of the module is the "OK_TO_SEND" message. It takes about 20ms from power up for the module SPI drivers to get initialized.

The slave has no way of forcing data to the master to indicate it is ready for transmission - the master must poll the client periodically.

Since the specified idle 2-byte pattern for both receive and transmit is '0xA7 0xB4', the master can transmit this idle pattern into the slave repeatedly. If the master receives idle patterns back from the slave, it indicates that the slave currently has nothing to transmit but is ready to communicate. On the module receive side, the host is expected to transmit idle pattern when it is querying the module's transmit buffer. In this way, the volume of discarded bytes is kept nearly as low as in the UART implementation because the module hardware does not place most idle pattern bytes in its RX FIFO. Most messaging can be serviced with polling. The FIFO thresholds are placed to detect large messages requiring interrupt-driven servicing.

On the module transmit side the intent is to fill the FIFO only when it is disabled and empty. In this condition, the module's SPI driver software loads as many queued messages as can completely fit in the FIFO. Then the FIFO is enabled.

The host is required to poll messages until idle pattern bytes are detected.

At this point the module's FIFO is empty and disabled, allowing the module's SPI driver to again respond to an empty FIFO interrupt and load the FIFO with any messages in queue.

Notes:

For SPI communication, read and write operations both require data being sent to the Slave SPI (idle bytes for reads and message data for writes). Any time data is sent to the module via the SPI bus, the Slave SPI of the module will send an equal amount of data back to the host.

These bytes must be buffered either in hardware or software, and it is up to the host to determine if the bytes received may be safely discarded (idle bytes), or should be passed on to the application handling GPS communication. Failure to properly handle data received from the SPI slave can result in corrupted GPS messages.

The external SPI master may send idle bytes and complete messages in a single transmission, provided that idle bytes shall not be inserted inside of a message.

The idle byte pattern and repeat count prevents the problem of messages lost due to normal occurrence of idle byte patterns within message data with high probability.

The external SPI master shall not send partial messages.

All transmissions from the SPI master shall be in multiples of 8 bits.

The external SPI master shall transmit the idle byte pattern when reading the SPI slave's transmit buffer when the master has no message data to transmit.

The SPI slave shall be serviced at a rate that will keep the TX FIFO empty.

Document number: 41010 For technical questions contact: info@origingps.com Revision: B01 01-01-12

rigings February Reproductive Technologies

ORG14XX Series Datasheet

Fully Integrated GPS Antenna Modules

7.2.4. Smart Sensors Data Interface

The ORG14XX module master mode I²C interface provides optional support for Dead Reckoning (DR) and optional code patch upload.

This bus has 2 lines, DR_SCL and DR_SDA, both are pseudo open-drain and require external pull-up resistors. Discrete EIT input is optionally used to wake up the module from Hibernate state.

Dead Reckoning (DR) I²C Interface

The DR I²C interface supports required sensor instruments for dead reckoning applications such as gyros, accelerometers, compasses or other sensors that can operate with an I²C bus.

The ORG14XX module acts as the I²C Master and the sensor devices function in Slave mode.

This provides a very low latency data pipe for the critical sensor data so that it can be used in the Navigation Library and Kalman filter to enhance navigation performance.

The MEMS algorithms perform a sensor data fusion with the GPS signal measurements.

GPS measurements can be used to calibrate the MEMS sensors during periods of GPS navigation.

The MEMS sensors can augment GPS measurements, and can be more accurate than GPS under degraded GPS signal conditions and certain dynamics.

DR I²C interface supports:

- Common sensor formats
- Typical data lengths (command + in/data out) of several bytes
- Standard I²C bus maximum data rate 400kbps
- Minimum data rate 100kbps

In current Premium firmware implementation, MEMS sensors integration provides a pseudo "position pinning" feature to prevent position wander and heading instability.

EIT input

The EIT (External Interrupt) input is optionally used by external sensors to provide a discrete interrupt to the module when a change of state is detected.

The input is either a level triggered or an edge triggered programmable for high/low level or rising/falling edge. The input is disabled during initial power-up or reset.

EIT interrupt input logic high state is 1.8 to 3.6V.

Do not connect to this input if the feature is not in use.

Data Storage Support

The DR I²C interface is available at boot-up for uploading data from a serial EEPROM.

Firmware updates may be provided from time to time to address ROM firmware issues as a method of performance improvement.

The DR I²C interface also supports serial flash devices used to store ARM7TDMI patch loads, including optional:

- FIFO support
- ARM7TDMI dedication to I²C interface during serial flash read or write

Document number: 41010 For technical questions contact: info@origingps.com www.origingps.com

- 23 -

01-01-12

7.3 Typical Application Circuit

UART Host Interface - ordering codes R01, R02

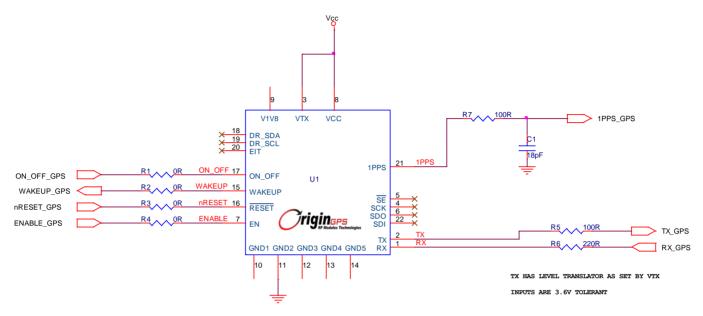


Figure 7-4: UART interface circuit

SPI Host Interface - ordering code R03

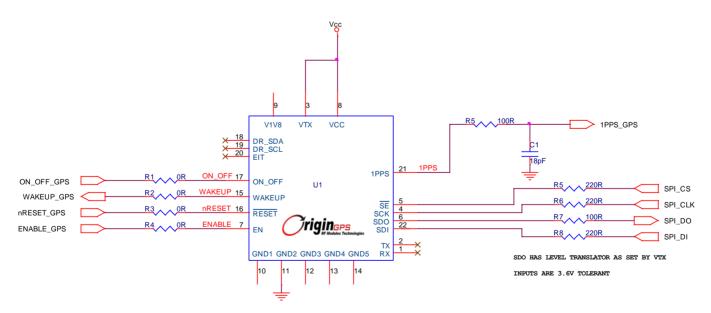


Figure 7-4: SPI interface circuit

8. PCB Layout

8.1 Footprint

TOP VIEW

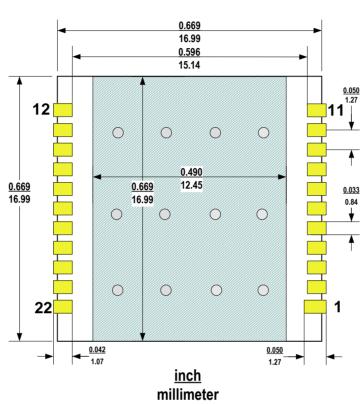


Figure 8-1: Footprint

Ground pad at the middle should be connected to main Ground plane by multiple vias. Ground pad at the middle should be solder masked.

Silk print of module's outline is highly recommended.

8.2 Design restrictions

Avoid current loops by connecting single Ground pad to main Ground.

Route the selected Ground pad to main Ground with shortest possible trace or via.

Avoid copper pour on the module side, keeping out the module minimum 6mm from the copper planes, metals planes or enclosures, connectors or LCD screens (Fig. 8-2).

Keep out of minimum 1.6mm from the copper planes under the ORG14XX GPS module (Fig. 8-3).

Keep out of signal or switching power traces and vias under the ORG14XX GPS module.

Signal traces to/from ORG14XX GPS module should have minimum length.

In case of adjacent high speed components, like CPU or memory, high frequency components, like transmitters, clock resonators or oscillators, metal planes, like LCD or battery enclosures, please contact OriginGPS for more precise, application specific recommendations.

Revision: B01 01-01-12

Document number: 41010

8.3 Placement

Special attention should be paid during GPS module placement and position on host PCB.

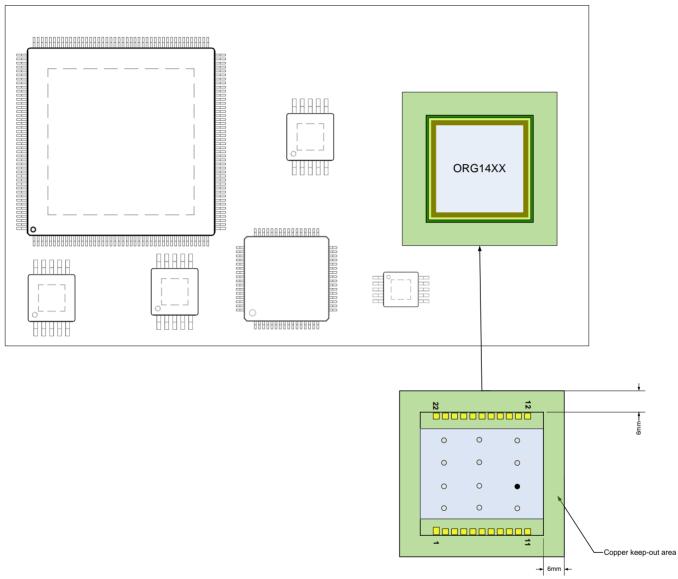


Figure 8-2: ORG14XX module placement

For board specific module position contact OriginGPS.

8.4 PCB stack up

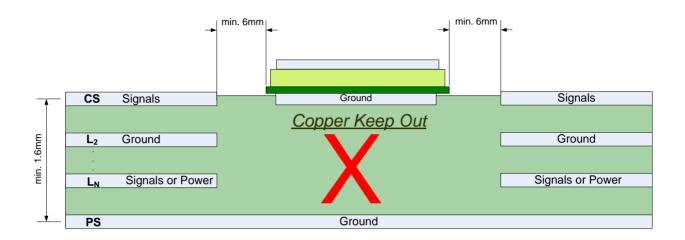


Figure 8-3: Typical PCB stack up

9. Operation

When power is first applied, the ORG14XX series module goes into a Hibernate state while integrated RTC starts and internal FSM sequences though to "Ready-to-Start" state.

While in "Ready-to-Start" state, the module awaits a pulse to the ON OFF input.

The host is not required to control external master nRESET since module's internal reset circuitry handles detection of application of power.

9.1 Starting the module

Module start-up procedure depends upon the chosen ordering option.

	Boot Option 01	Boot Option 02	Boot Option 03
Ordering code	ORG14XX-xx <u>01</u>	ORG14XX-xx <u>02</u>	ORG14XX-xx <u>03</u>
Power On State	Full Power	Hibernate	Hibernate
Host Interface	UART	UART	SPI
Interface settings on power	4,800 bps 8-N-1	4,800 bps 8-N-1	Slave
Data format on power	NMEA	NMEA	NMEA

Table 9-1: Hardware option

01 ordering code:

■ The module has integrated power-up circuit that automatically asserts ON_OFF pulse 1 sec. after FSM indicates "Ready-to-Start" condition.

02 and 03 ordering codes:

- A pulse on the ON_OFF input will command the module to start.
- Since integrated RTC startup times are variable, detection of when the module is ready to accept an ON_OFF pulse requires the host to either wait for a fixed interval of 1 sec., or to monitor a pulse on module WAKEUP output that indicates FSM "Ready-to-Start".
- Optionally, a pulse on the ON_OFF input can be asserted every second until the module starts by indicating logic high level on WAKEUP output.

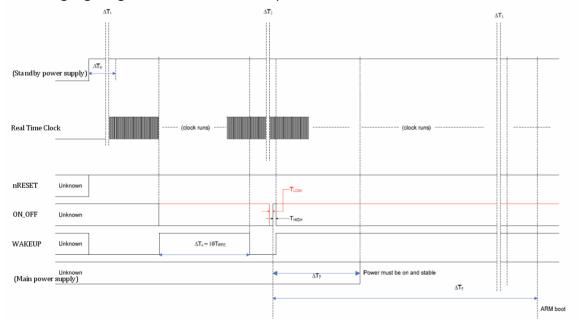


Figure 9-1: Startup timing

Fully Integrated GPS Antenna Modules

Symbol	Parameter	Condition	Min	Тур	Max	Units
f_{RTC}	RTC frequency	25 ⁰ C	-20 ppm	32768	+20 ppm	Hz
t _{RTC}	RTC tick	25 ⁰ C		30.5176		μs
ΔT_1	RTC startup time			300		ms
ΔT_0	Power stabilization		$6 \cdot t_{RTC} + \Delta T_1$	$7 \cdot t_{RTC} + \Delta T_1$	$8 \cdot t_{RTC} + \Delta T_1$	μs
ΔT_6	WAKEUP pulse	RTC running		10		t_{RTC}
ΔT_{LOW}	ON_OFF low		3			t_{RTC}
ΔT_{HIGH}	ON_OFF high		3			t_{RTC}
ΔT_3	Startup sequencing	After ON_OFF		1024		t_{RTC}
-	ON_OFF to WAKEUP high	After ON_OFF		6		t _{RTC}
ΔT_5	ON_OFF to ARM start	After ON_OFF		2130		t _{RTC}
ΔT_7	Main power source start ¹	WAKEUP high	0	30	300	t_{RTC}

Table 9-2: Startup timing

Note:

When power provided through dual supply.
 Low quescent current power source (LDO) for Hibernate state, and high efficiency source (DC-DC) for Full Power state.
 The main power supply should be able to provide current for Full Power state within 1ms after WAKEUP is high.

9.2 Verifying the module has started

The ORG14XX module WAKEUP output will go logic high indicating the GPS processor has started. System activity indication depends upon the chosen ordering option.

01 and 02 ordering codes:

- When active, the module will output NMEA messages at the 4800bps.
- First NMEA message after power-up is '\$P\$RF150,1*3E'.

03 ordering code:

- Since the module is SPI slave, there is no possible indication of system "ready" through SPI data interface.
- The host must initiate SPI connection approximately 1 sec. after WAKEUP output goes high.

9.3 Shutting down the module

Transferring the ORG14XX series module into Hibernate state can be initiated in two ways:

- By a pulse on the ON_OFF input when the ORG14XX module in Full Power state.
- By serial message MID205 (OSP[™]) or \$PSRF117 (NMEA).
- Last message before Hibernate state is '\$P\$RF150,1*3F'.

The orderly shutdown may take anywhere from 10ms to 900ms to complete, depending upon operation in progress and messages pending, and hence is dependent upon serial interface speed and controls.

Revision: B01 01-01-12

Document number: 41010

Fully Integrated GPS Antenna Modules

10.Software Functions

The module supports NMEA-0183 protocol and One Socket Protocol (OSP[™]).

10.1 NMEA

NMEA is generic ASCII protocol used by general purpose GNSS receivers.

NMEA Output Messages

Message	Description
\$GPGGA	Time, position and fix type data
\$GPGLL ¹	Latitude, longitude, UTC time of position fix and status
\$GPGSA	GPS receiver operating mode, satellites used in the position solution and DOP values
\$GPGSV	The number of GPS satellites in view, satellite ID, elevation, azimuth and SNR values
\$GPRMC	Time, date, position, course and speed data
\$GPVTG ¹	Course and speed information relative to the ground
\$GPZDA ¹	1PPS timing message
\$PSRF150	OK to send data to the module
\$PSRF155	Extended Ephemeris Proprietary Message
\$PSRF156,0x20	ECLM ACK/NACK
\$PSRF156,0x21	ECLM EE Get Age response
\$PSRF156,0x22	ECLM Get SGEE Age response
\$PSRF156,0x23	ECLM Download Initiate Request
\$PSRF156,0x24	ECLM Erase Storage File
\$PSRF156,0x25	ECLM Update File Content
\$PSRF156,0x26	ECLM Request File Content

Table 10-1: NMEA protocol output messages

Note:

NMEA Input Messages

Message ID	Message	Description		
\$PSRF100	Set Serial Port	Set UART parameters and protocol		
\$PSRF101	Navigation Initialization	Parameters required for start using X/Y/Z		
\$PSRF103	Query/Rate Control	Query standard NMEA message and/or set output rate		
\$PSRF104	LLA Navigation Initialization	Parameters required for start using Lat/Lon/Alt		
\$PSRF105	Development Data On/Off	Development Data messages On/Off		
\$PSRF106	Select Datum	Selection of an alternative map datum		
\$PSRF107	Extended ephemeris propriet	ary message		
\$PSRF108	Extended ephemeris propriet	ary message		
\$PSRF110	Extended ephemeris debug			
\$PSRF114,0x16	ECLM start download	ECLM start download		
\$PSRF114,0x17	ECLM file size	ECLM file size		
\$PSRF114,0x18	ECLM packet data			
\$PSRF114,0x19	ECLM Get EE Age			
\$PSRF114,0x1A	ECLM Get SGEE Age			
\$PSRF114,0x1B	ECLM Host File Content			
\$PSRF114,0x1C	ECLM Host ACK/NACK			
\$PSRF117	System Turn Off			
\$PSRF120	Storage Configuration Setting			

Table 10-2: NMEA protocol input messages

Document number: 41010 For technical questions contact: info@origingps.com - 30 -

Revision: B01 01-01-12

^{1.} Not transmitted by default, can be enabled by \$PSRF103 command

Fully Integrated GPS Antenna Modules

10.2 OSP™

 $\mathsf{OSP}^\mathsf{^{\mathsf{TM}}}$ is a proprietary extension to SiRF Binary Standard protocol used by SiRF GPS processors.

OSP Binary Output Messages

MID (hex)	MID (dec)	Definition	Sub ID (hex)	Sub ID (dec)	Definition
0 x 02	2	Measured Navigation Data			
0 x 03	3	True Tracker Data			
0 x 04	4	Measured Tracking Data			
0 x 06	6	SW Version			
0 x 07	7	Clock Status			
0 x 08	8	50 BPS Subframe Data			
0 x 09	9	Throughput			
0 x 0A	10	Error ID			
0 x 0B	11	Command Acknowledgement			
0 x 0C	12	Command No Acknowledgement			
0 x 0D	13	Visible List			
0 x 0E	14	Almanac Data			
0 x 0F	15	Ephemeris Data			
0 x 10	16	Test Mode 1			
0 x 12	18	Ok To Send			
0 x 13	19	Navigation Parameters			
0 x 14	20	Test Mode 2			
0 x 1B	27	DGPS Status			
0 x 1C	28	Nav. Lib. Measurement Data			
0 x 1E	30	Nav. Lib. SV State Data			
0 x 1F	31	Nav. Lib. Initialization Data			
0 x FF	255	Development Data			

Table 10-3: OSP binary output messages

Fully Integrated GPS Antenna Modules

OSP Binary Input Messages

MID (hex)	MID (dec)	Definition	Sub ID (hex)	Sub ID (dec)	Definition
0 x 35	53	Advanced Power Management			
0 x 80	128	Initialize Data Source			
0 x 81	129	Switch to NMEA Protocol			
0 x 82	130	Set Almanac (upload)			
0 x 84	132	Software Version (Poll)			
0 x 86	134	Set Main Serial Port			
0 x 87	135	Switch Protocol			
0 x 88	136	Mode Control			
0 x 89	137	DOP Mask			
0 x 8A	138	MID_SET_DGPS_MODE			
0 x 8B	139	Elevation Mask			
0 x 8C	140	Power Mask			
0 x 8D	141	Editing Residual			
0 x 8E	142	Steady-State Detection			
0 x 8F	143	Static Navigation			
0 x 90	144	Poll Clock Status			
0 x 92	146	Poll Almanac			
0 x 93	147	Poll Ephemeris			
0 x 95	149	Set Ephemeris (upload)			
0 x 96	150	Switch Operating Mode			
0 x 97	151	Set Trickle Power Parameters			
0 x 98	152	Poll Navigation Parameters			
0 x A5	165	Set UART Configuration			
0 x A6	166	Set Message Rate			
0 x A7	167	Low Power Acquisition Parameters			
0 x A8	168	MID_POLL_CMD_PARAM			
0 x A9	169	Set Datum			
0 x AA	170	Set SBAS Parameters			
			0 x 01	1	Set DrNavInit
			0 x 02	2	Set DrNavMode
			0 x 03	3	Set GyrFactCal
040	472	MID Date	0 x 04	4	Set DrSensParam
0 x AC	172	MID_DrIn	0 x 05	5	Poll DrValid
			0 x 06	6	Poll GyrFactCal
			0 x 07	7	Poll DrSensParam
			0 x 13	19	DR Debug Information
0 x AF	175	Send Command String			
			0 x 14	20	Patch Storage Control
			0 x 22	34	Patch Memory Load Request
0 v D2	170	CIDE MCC CCD TDACKED IC	0 x 26	38	Patch Memory Exit Request
0 x B2	178	SIRF_MSG_SSB_TRACKER_IC	0 x 28	40	Patch Memory Start Request
			0 x 90	144	Patch Manager Prompt
			0 x 91	145	Patch Manager Ack.
0 x CD	205	Set Generic Software Control	0 x 10	16	Software Commanded OFF
0 x D1	209	MID_QUERY_REQ			
0 x D2	210	MID_POS_REQ			

Table 10-4: OSP binary input messages

Fully Integrated GPS Antenna Modules

MID (hex)	MID (dec)	Definition	Sub ID (hex)	Sub ID (dec)	Definition
			0 x 01	1	SET_IONO
			0 x 02	2	SET_EPH_CLOCK
			0 x 03	3	SET_ALM
			0 x 04	4	SET_ACQ_ASSIST
0 x D3	211	MID_SET_AIDING	0 x 05	5	SET_RT_INTEG
			0 x 06	6	SET_UTC_MODEL
			0 x 07	7	SET_GPS_TOW_ASSIST
			0 x 08	8	SET_AUX_NAV
			0 x 09	9	SET_AIDING_AVAIL
			0 x 01	1	EPH_REQ
			0 x 02	2	ALM_REQ
			0 x 03	3	B_EPH_REQ
0 D4	212	NAID STATUS DEO	0 x 04	4	TIME_FREQ_APPROX_POS_REQ
0 x D4	212	MID_STATUS_REQ	0 x 05	5	CH_LOAD_REQ
			0 x 06	6	CLIENT_STATUS_REQ
			0 x 07	7	OSP_REV_REQ
			0 x 08	8	SERIAL_SETTINGS_REQ
0 DE	212	MAID CECCION CONTROL DEO	0 x 01	1	SESSION_OPEN_REQ
0 x D5	213	MID_SESSION_CONTROL_REQ	0 x 02	2	SESSION_CLOSE_REQ
0 x D6	214	MID_HW_CONFIG_RESP			
			0 x 01	1	APPROX_MS_POS_RESP
			0 x 02	2	TIME_TX_RESP
0xD7	215	MID_AIDING_RESP	0 x 03	3	FREQ_TX_RESP
			0 x 04	4	SET_NBA_SF1_2_3
			0 x 05	5	SET_NBA_SF4_5
0400	216	MID MCC ACK IN	0 x 01	1	ACK_NACK_ERROR
0xD8	216	MID_MSG_ACK_IN	0 x 02	2	REJECT
0xD9	217		0 x 01	1	SENSOR_ON_OFF
			0 x 00	0	FP_MODE_REQ
			0 x 01	1	APM_REQ
0xDA	218	MID_PWR_MODE_REQ	0 x 02	2	MPM_REQ
			0 x 03	3	TP_REQ
			0 x 04	4	PTF_REQ
0xDB	210	MID HW CTPL IN	0 x 01	1	VCTCXO
OXDR	219	MID_HW_CTRL_IN	0 x 02	2	ON_OFF_SIG_CONFIG
			0 x 01	1	CONFIG
	0xDC 220		0 x 02	2	EVENT_REG
0xDC		220 MID_CW_CONTROLLER_REQ	0 x 03	3	COMMAND_SCAN
			0 x 04	4	CUSTOM_MON_CONFIG
			0 x 05	5	FFT_NOTCH_SETUP
Ov.E1	225	MID SIRFOUTAUT	0 x 06	6	STATISTICS
0xE1	225	MID_SiRFOutput	0 x 07	7	Statistics with Aiding

Table 10-4: OSP binary input messages

Fully Integrated GPS Antenna Modules

MID (hex)	MID (dec)	Definition	Sub ID (hex)	Sub ID (dec)	Definition	
			0 x 01	1	SSB_EE_SEA_PROVIDE_EPH	
		0 x 02	2	SSB_EE_POLL_STATE		
			0 x 10	16	SSB_EE_FILE_DOWNLOAD	
			0 x 11	17	SSB_EE_QUERY_AGE	
			0 x 12	18	SSB_EE_FILE_PART	
			0 x 13	19	SSB_EE_DOWNLOAD_TCP	
			0 x 14	20	SSB_EE_SET_EPHEMERIS	
		0 x 15	21	SSB_EE_FILE_STATUS		
0xE8	232	MID EE INDIIT	0 x 16	22	ECLM Start Download	
UXEO	232	MID_EE_INPUT	0 x 17	23	ECLM File Size	
			0 x 18 24			ECLM Packet Data
			0 x 19	25	Get EE Age	
			0 x 1A	26	Get SGEE Age	
			0 x 1B	27	ECLM Host File Content	
			0 x 1C	28	ECLM Host ACK/NACK	
			0 x 1D	29	ECLM Get NVM Header	
			0 x FD	253	EE_STORAGE_CONTROL	
			0 x FE	254	SSB_EE_DISABLE_EE_SECS	

Table 10-4: OSP binary input messages

11. Handling Information

11.1 Product Packaging and Delivery

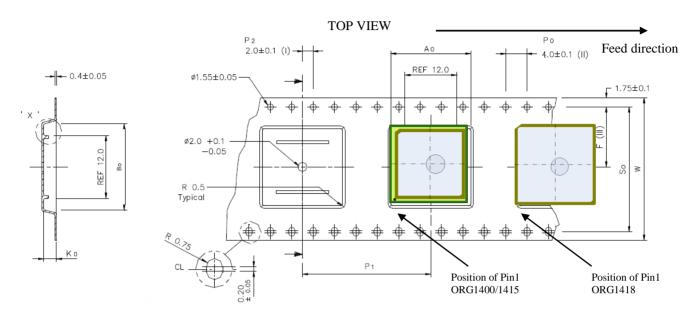


Figure 10-1: Carrier

	ORG1400/1415	ORG1418
A_0	18.00 ± 0.1	20.50 ± 0.1
B ₀	18.00 ± 0.1	20.50 ± 0.1
K_0	05.70 ± 0.1	05.30 ± 0.1
F	14.20 ± 0.1	14.20 ± 0.1
P ₁	24.00 ± 0.1	24.00 ± 0.1
S ₀	28.40 ± 0.1	28.40 ± 0.1
W	32.00 ± 0.3	32.00 ± 0.3

Table 10-1: Carrier dimensions [mm]

Carrier material: Conductive Polystyrene

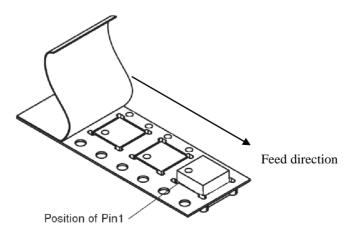


Figure 10-2: Module position

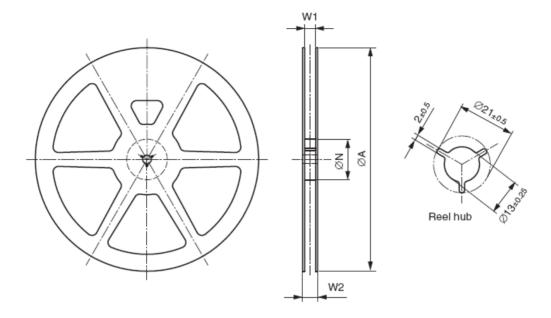


Figure 10-3: Reel

ØΑ	330.00 ± 0.85
ØN	60.00 ± 0.5
W_1	33.00 ± 0.5
W ₂	39.00 ± 0.5

Table 10-2: Reel dimensions [mm]

Reel material: Antistatic Plastic

Units per reel ORG1400/1415		ORG1418
Minimum	250	200
Maximum	500	400

Table 10-3: Reel quantity

11.2 Moisture Sensitivity

The devices are moisture sensitive at MSL 3 according to standard IPC/JEDEC J-STD-033B.

The recommended drying process for samples and bulk components is to be done at 125°C for 48 hours.

11.3 Assembly

The ORG14XX series modules support automatic assembly and reflow soldering processes. Reflow soldering of the ORG14XX series modules on the component side of the motherboard PCB according to standard IPC/JEDEC J-STD-020D for LGA SMD.

Suggested solder paste stencil is 5 mil to ensure sufficient solder volume.

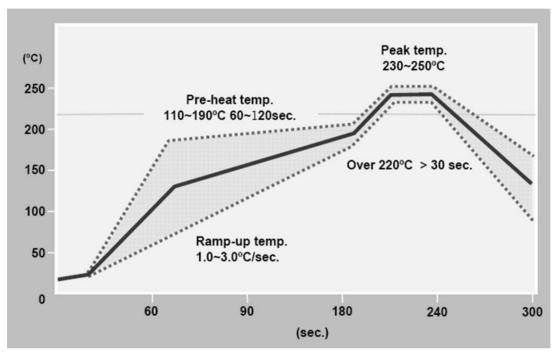


Figure 11-4: Recommended soldering profile

Suggested peak reflow temperature is 250°C for 10 sec. for Pb-Free solder paste. Absolute Maximum reflow temperature is 260°C for 10 sec.

11.4 Rework

If localized heating is required to rework or repair the ORG14XX series module, precautionary methods are required to avoid exposure to solder reflow temperatures that can result in permanent damage to the device.

11.5 ESD Sensitivity

The ORG14XX series module is ESD sensitive device and should be handled with care.

Fully Integrated GPS Antenna Modules

11.6 Compliances

The following standards are applied on the ORG14XX series modules production:

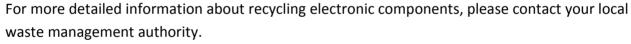
- IPC-6011/6012 Class2 for PCB manufacturing
- IPC-A-600 Class2 for PCB inspection
- IPC-A-610D Class2 for SMT acceptability

The ORG14XX series modules are being manufactured ISO 9001:2000 accredited facilities.

The ORG14XX series modules are designed and being manufactured and handled to comply with and according with Pb-Free/RoHS Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

The ORG14XX series modules comply with the following EMC standards:

- EU CE EN55022:06+A1(07), Class B
- US FCC 47CFR Part 15:09, Subpart B, Class B

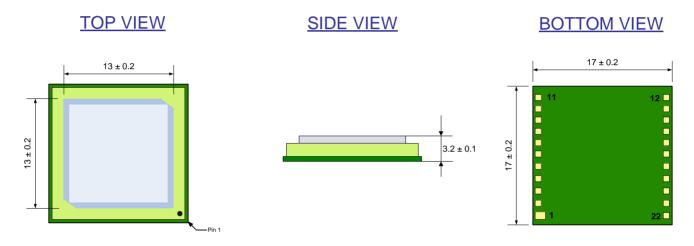

11.7 Safety Information

Improper handling and use can cause permanent damage to the device.

There is also the possible risk of personal injury from mechanical trauma or shocking hazard.

11.8 Disposal Information

The product should not be treated as household waste.


Document number: 41010 For technical questions contact: info@origingps.com Revision: B01 01-01-12

12. Mechanical Specifications

- The ORG14XX series modules have advanced miniature packaging and a LGA footprint.
- The ORG14XX series modules PCB footprint size is 17mm x 17mm.
- The ORG14XX series modules are surface mount devices packaged on a miniature printed circuit board with a metallic RF enclosure on one side and Microstrip Patch Antenna on top of the shield.
- There are 22 surface mount connection pads with a base metal of copper and an Electroless Nickel / Immersion Gold (ENIG) finish.
- The ORG14XX series modules have been designed for automated pick and place assembly and reflow soldering processes.

12.1 ORG1400

All dimensions are in millimeters Figure 11-1: ORG1400 mechanical drawing

Dimensions	Length	Width	Height
mm	17.0 ± 0.2	17.0 ± 0.2	3.2 ± 0.1
inch	0.669 ± 0.008	0.669 ± 0.008	0.125 ± 0.004

Weight		
gr	2.2	
OZ	0.1	

Table 11-1: ORG1400 mechanical information

12.2 ORG1415

TOP VIEW SIDE VIEW BOTTOM VIEW 15 ± 0.2 17 ± 0.2 18 ± 0.2 19 ± 0.2 10

All dimensions are in millimeters

Figure 11-2: ORG1415 mechanical drawing

Dimensions	Length	Width	Height
mm	17.0 ± 0.2	17.0 ± 0.2	4.8 ± 0.2
inch	0.669 ± 0.008	0.669 ± 0.008	0.189 ± 0.008

Weight		
gr 3.5		
OZ	0.12	

Table 11-2: ORG1415 mechanical information

12.3 ORG1418

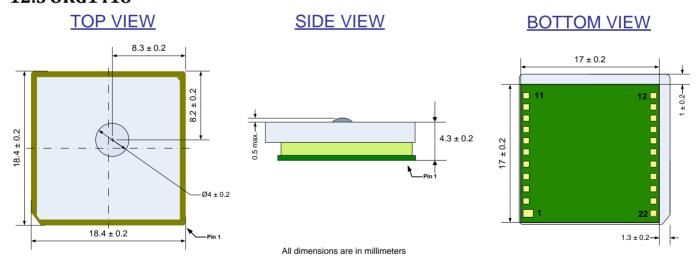


Figure 11-3: ORG1418 mechanical drawing

Dimensions	Length	Width	Height
mm	18.4 ± 0.2	18.4 ± 0.2	4.8 ± 0.2
inch	0.724 ± 0.008	0.724 ± 0.008	0.189 ± 0.008

 Weight


 gr
 4.75

 oz
 0.17

Table 11-3: ORG1418 mechanical information

13. Ordering Information

		ORG1400	ORG1415	ORG1418
Ordering code		ORG14 <u>00</u> -xxxx	ORG14 <u>15</u> -xxxx	ORG14 <u>18</u> -xxxx
Average C/N ₀		40 dB-Hz	45 dB-Hz	48 dB-Hz
PCB outline		17mm x 17mm	17mm x 17mm	17mm x 17mm
	Length	17 mm	17 mm	18.4 mm
Dimensions (typ.)	Width	17 mm	17 mm	18.4 mm
	Thickness	3.2 mm	4.8 mm	4.8 mm

Table 12-1: Antenna options

		Basic Series	Standard Series	Premium Series
Ordering code		ORG14xx- <u>BC</u> xx	ORG14XX-Rxx	ORG14xx-PMxx
V _{CC} Range		1.8 V	2V – 6V	
TX Output \	Voltage Max	1.8 V	1.8V – 5V	
	Jammer Remover	✓	✓	✓
	CGEE™ and SGEE™	✓	✓	✓
F:	ATP™, PTF™, APM™	✓	✓	✓
Firmware	SiRFAware MPM™			✓
Features	SBAS (WAAS/EGNOS)			✓
	MEMS sensors support			✓
	ABP™ support			✓
Boot Option Variants		02	01, 02, 03	01, 02, 03

Table 12-2: Firmware / Hardware options

	Boot Option 01	Boot Option 02	Boot Option 03
Ordering code	ORG14xx-xx <u>01</u>	ORG14xx-xx <u>02</u>	ORG14xx-xx <u>03</u>
Power On State	Full Power	Hibernate	Hibernate
Host Interface	UART	UART	SPI
Interface settings on power	4,800 bps	4,800 bps	Slave
Data format on power	NMEA	NMEA	NMEA

Table 12-3: Boot options

Document number: 41010 Revision: B01

01-01-12

Fully Integrated GPS Antenna Modules

14.Design-In Checklist

Following the Design-In Checklist when developing applications with the ORG14XX series GPS antenna modules is highly recommended to reduce design risks.

14.1 Module selection

ORG14XX series modules have been intentionally designed to allow GPS functionality to be optimally tailored to application specific environment.

Changing between the different modules is easy, due to the same footprint and pin-out.

Does the application demand for ultra low profile GPS antenna module? Is the GPS module placed in line of sight with GPS satellites?

☑ Select ORG1400 for ultra-low profile solution.

Does the application demand for standard positioning and navigation, including indoor tracking?

☑ Select ORG1415 for high-sensitivity solution.

Does the application demand for module installation position with limited GPS satellite visibility?

☑ Select ORG1418 for ultra-sensitivity solution.

Revision: B01 01-01-12

Document number: 41010

Criginges Perhapogas

ORG14XX Series Datasheet

Fully Integrated GPS Antenna Modules

14.2 Schematics validation

Check Power Supply Requirements

Is the main power supply voltage (V_{cc}) within the specified range?

- ☑ Verify 2.0V to 6.0V. Raw battery voltage source is accepted.
- (i) The module will shut down when voltage trip below 1.8V.
- (i) nRESET pad will be internally held in low state.

Single supply operation required?

 \square Connect V_{TX} to V_{CC} .

Is the UART/SPI output buffer power supply voltage (V_{TX}) within the specified range?

 \square Verify V_{TX} from 1.8V to 5V.

Is the power source ripple not exceeding maximum allowed?

- ① Voltage ripple below 50mV_{pp} allowed for frequency between 100 KHz and 1 MHz.
- ① Voltage ripple below $15mV_{pp}$ allowed for frequency above 1MHz.

Does the power source capable to handle current consumption requirements?

- (i) Maximum current consumption during acquisition is 45mA.
- ① Inrush current during module power up may exceed 60mA.

Is only single GND pad connected to the main Ground?

Check Communication Interface

Is the UART interface used?

- \square Connect series ceramic resistor of 100-200 Ω and shunt ceramic capacitor of 12-22pF to form low pass filter on GPS TX (pad 2) and GPS RX (pad 1) lines.
- ① For SPI host interface options use module with ordering option R03..

Is the UART/SPI output high logic level voltage V_{CC} tolerant?

- \square Connect V_{TX} (pad 3) to V_{CC} (pad 8).
- ① UART voltage level is externally defined by V_{TX} pad.

Check GPIO

01-01-12

Is the Hot or Warm starts needed?

- ☑ Connect host output to ON OFF input (pad 17).
- ① Main V_{CC} is permanently applied. GPS module is hibernated by ON OFF toggle.
- ① ON OFF input is 1.8-3.6V compatible.

Is module power state indicator required?

- ☑ Connect WAKEUP (pad 15) to host input.
- (i) WAKEUP output is LVCMOS 1.8V compatible.
- (i) In Full Power state the WAKEUP is in high state. In Hibernate or Standby state the logic level is low.
- Don't drive nRESET input high.
- Don't connect Pull-up to ON OFF input.
- Don't Pull-up or Pull-down on any of the inputs or outputs if not in use.

Document number: 41010 For technical questions contact: info@origingps.com Revision: B01

Fully Integrated GPS Antenna Modules

14.3 Layout validation

Is the GPS antenna module placed according to the recommendations?

☑ Follow the link for module's pin 1 position in OriginGPS provided spreadsheet.

Has the copper keep-out on module's layer been followed?

- \square Keep out the module minimum 6mm from the metals planes.
- ① Reduce copper planes on module's side as much as possible.
- (i) For more information refer to Fig. 8-2

Has the copper planes keep-out under the module been followed?

- oximes Keep out of minimum 1.6mm from the copper planes under the module.
- **(i)** For more information refer to Fig. 8-3

Is ground paddle under the module connected to main ground plane by multiple vias? Is ground paddle under the module solder masked?

- ① Ground paddle under the module is important for EMI immunity of the GPS receiver.
- (i) For more information refer to Fig. 8-1

Does the silk print of module's footprint outline appear on host PCB?

① Silk print of the module's footprint outline in important for automatic pick and place assembly process and inspection.

Revision: B01 01-01-12

Document number: 41010