Low Pass Filter

50Ω DC to 98 MHz

Maximum Ratings

Operating Temperature	-55°C to 100°C			
Storage Temperature	-55°C to 100°C			
RF Power Input	0.5W max.			
Permanent damage may occur if any of these limits are exceeded.				

• test equipi

Featuresgood atter

- good attenuation rate, 1.35 typ. 20dB/ 3dB BW ratio
- · rugged shielded case
- other SLP models available with wide selection of cut-off frequencies

Applications

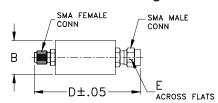
- lab use
- test equipment
- video equipment

SLP-100+

CASE STYLE: FE99

 Connectors
 Model
 Price
 Qty.

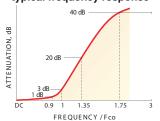
 SMA
 SLP-100+
 \$34.95 ea. (1-9)

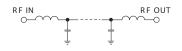

+ RoHS compliant in accordance with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications.

Low Pass Filter Electrical Specifications

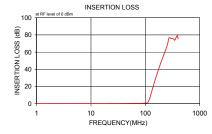
PASSBAND (MHz)	fco (MHz) Nom.	STOPBAND (MHz)		VS/ (:)	
(loss < 1 dB)	(loss 3 dB)	(loss > 20 dB)	(loss > 40 dB)	Passband Typ.	Stopband Typ.
DC-98	108	146-189	189-400	1.7	18

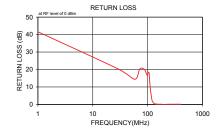

Outline Drawing

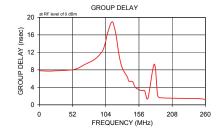

Outline Dimensions (inch)

wt	Е	D	В
grams	.312	1.98	.67
42.0	7.92	50.29	17.02

typical frequency response




electrical schematic



Typical Performance Data

Frequency (MHz)		on Loss dB)	Return Loss (dB)	Frequency (MHz)	Group Delay (nsec)
(101112)	<u>x</u>	σ	()	((11000)
1.00	0.02	0.1	41.6	1.00	7.802
29.50	0.16	0.1	20.2	15.00	7.718
58.00	0.34	0.1	14.4	29.50	7.812
72.00	0.31	0.1	20.3	43.50	7.901
86.50	0.41	0.1	20.2	58.00	8.226
98.00	0.58	0.1	16.8	72.00	9.283
102.00	0.62	0.1	18.4	86.50	10.402
106.00	0.75	0.1	18.3	98.00	12.091
108.00	0.93	0.2	15.0	102.00	13.505
112.00	1.72	0.5	9.3	104.00	14.551
120.00	5.98	1.3	2.5	106.00	15.904
130.01	13.62	1.3	0.6	108.00	16.952
138.02	19.37	1.2	0.3	112.00	18.647
140.02	20.73	1.2	0.3	115.00	18.923
146.02	24.55	1.2	0.2	120.00	16.027
150.03	26.95	1.1	0.1	125.00	11.256
160.03	32.54	1.2	0.1	130.00	8.381
170.04	37.64	1.2	0.1	138.00	6.335
180.04	42.35	1.2	0.1	140.00	5.440
185.04	44.43	1.3	0.0	146.00	5.302
189.05	46.24	1.4	0.0	150.00	4.068
250.07	67.20	3.6	0.1	155.00	3.545
271.58	76.41	8.4	0.1	160.00	3.249
300.08	75.73	6.4	0.1	165.00	3.192
330.08	75.45	3.9	0.1	170.00	1.495
343.07	73.72	2.6	0.1	180.00	9.308
360.08	75.87	4.3	0.1	185.00	2.440
371.58	77.51	9.8	0.1	189.00	1.634
390.08	79.32	7.8	0.1	250.00	1.412
400.08	75.26	2.4	0.1	260.00	1,228

Mini-Circuits

For detailed performance specs & shopping online see web site

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipolities.com